暴露于单剂量空间相关质子辐射改变小鼠肠道单碳代谢途径和微生物组。

IF 2.7 3区 医学 Q2 BIOLOGY
Isabelle R Miousse, Charles M Skinner, Rupak Pathak, Vijayalakshmi Sridharan, Stepan Melnyk, Jeffrey Willey, Jeffrey Chancellor, Martin Hauer-Jensen, Marjan Boerma, Igor Koturbash
{"title":"暴露于单剂量空间相关质子辐射改变小鼠肠道单碳代谢途径和微生物组。","authors":"Isabelle R Miousse, Charles M Skinner, Rupak Pathak, Vijayalakshmi Sridharan, Stepan Melnyk, Jeffrey Willey, Jeffrey Chancellor, Martin Hauer-Jensen, Marjan Boerma, Igor Koturbash","doi":"10.1667/RADE-25-00019.1","DOIUrl":null,"url":null,"abstract":"<p><p>Space radiation, primarily originating from galactic cosmic rays, is mainly composed of protons. Given NASA's plans for manned lunar and Mars missions, it is critical to assess the risk of proton radiation in disrupting tissue homeostasis, including in the intestine, which is a highly radiosensitive organ that harbors trillions of bacteria on the luminal surface. One-carbon metabolism encompasses the folate and methionine cycle and plays a crucial role in maintaining tissue homeostasis by regulating methylation, reductive metabolism, and nucleotide synthesis. However, the effects of proton radiation on intestinal one-carbon metabolism and the luminal microbiome profile are unknown. To address this, 6-month-old male C57BL/6J mice were exposed to a single dose of 0.5 Gy or 1.0 Gy of protons (150 MeV/n; dose rate = 35-55 cGy/min). Nine months after irradiation, significant shifts in the one-carbon metabolism pathway were detected in the mouse proximal jejunum and colon. These changes were exhibited as a loss of intra-intestinal methionine, s-adenosylmethionine, and glutathione tissue concentrations, with more pronounced effects being observed in the proximal jejunum compared to the colon. This resulted in the loss of DNA methylation within long-interspersed nucleotide element-1 (LINE-1), indicative of a global hypomethylative phenotype. Molecular changes were characterized by substantial dysregulation of gene expression in the proximal jejunum, where the most pronounced changes were associated with the dramatic loss of Nos2 expression and reactivation of Casp14, suggesting potential shifts in amino acid utilization and restoration of epithelial barriers in the gut. Furthermore, claudins Cldn5, Cldn6, and Cldn10 were substantially modulated in the proximal jejunum of exposed mice. Gross shifts in the microbiota profiles were exhibited as increases in both overall richness and diversity, however, at the expense of commensal bacterial species, like Akkermansia. The extent of the observed alterations was not congruent with the relatively low doses used in the study, the late time-point, and the overall lack of histomorphological alterations. Altogether, our findings demonstrate that exposure to space-relevant proton radiation causes substantial and persistent changes in the mouse gut. The degree and nature of the observed effects suggest the potential for negative health consequences after exposure to proton radiation during deep space exploration.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exposure to a Single Dose of Space-Relevant Proton Radiation Alters the Intestinal One-Carbon Metabolism Pathway and Microbiome in Mice.\",\"authors\":\"Isabelle R Miousse, Charles M Skinner, Rupak Pathak, Vijayalakshmi Sridharan, Stepan Melnyk, Jeffrey Willey, Jeffrey Chancellor, Martin Hauer-Jensen, Marjan Boerma, Igor Koturbash\",\"doi\":\"10.1667/RADE-25-00019.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Space radiation, primarily originating from galactic cosmic rays, is mainly composed of protons. Given NASA's plans for manned lunar and Mars missions, it is critical to assess the risk of proton radiation in disrupting tissue homeostasis, including in the intestine, which is a highly radiosensitive organ that harbors trillions of bacteria on the luminal surface. One-carbon metabolism encompasses the folate and methionine cycle and plays a crucial role in maintaining tissue homeostasis by regulating methylation, reductive metabolism, and nucleotide synthesis. However, the effects of proton radiation on intestinal one-carbon metabolism and the luminal microbiome profile are unknown. To address this, 6-month-old male C57BL/6J mice were exposed to a single dose of 0.5 Gy or 1.0 Gy of protons (150 MeV/n; dose rate = 35-55 cGy/min). Nine months after irradiation, significant shifts in the one-carbon metabolism pathway were detected in the mouse proximal jejunum and colon. These changes were exhibited as a loss of intra-intestinal methionine, s-adenosylmethionine, and glutathione tissue concentrations, with more pronounced effects being observed in the proximal jejunum compared to the colon. This resulted in the loss of DNA methylation within long-interspersed nucleotide element-1 (LINE-1), indicative of a global hypomethylative phenotype. Molecular changes were characterized by substantial dysregulation of gene expression in the proximal jejunum, where the most pronounced changes were associated with the dramatic loss of Nos2 expression and reactivation of Casp14, suggesting potential shifts in amino acid utilization and restoration of epithelial barriers in the gut. Furthermore, claudins Cldn5, Cldn6, and Cldn10 were substantially modulated in the proximal jejunum of exposed mice. Gross shifts in the microbiota profiles were exhibited as increases in both overall richness and diversity, however, at the expense of commensal bacterial species, like Akkermansia. The extent of the observed alterations was not congruent with the relatively low doses used in the study, the late time-point, and the overall lack of histomorphological alterations. Altogether, our findings demonstrate that exposure to space-relevant proton radiation causes substantial and persistent changes in the mouse gut. The degree and nature of the observed effects suggest the potential for negative health consequences after exposure to proton radiation during deep space exploration.</p>\",\"PeriodicalId\":20903,\"journal\":{\"name\":\"Radiation research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1667/RADE-25-00019.1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-25-00019.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

空间辐射主要来自星系宇宙射线,主要由质子组成。考虑到美国宇航局载人登月和火星任务的计划,评估质子辐射破坏组织稳态的风险至关重要,包括在肠道中,这是一个高度辐射敏感的器官,在肠道表面蕴藏着数万亿细菌。单碳代谢包括叶酸和蛋氨酸循环,并通过调节甲基化、还原性代谢和核苷酸合成在维持组织稳态中起着至关重要的作用。然而,质子辐射对肠道单碳代谢和肠道微生物群的影响尚不清楚。为了解决这个问题,6个月大的雄性C57BL/6J小鼠被暴露于0.5 Gy或1.0 Gy的单剂量质子(150 MeV/n,剂量率= 35-55 cGy/min)。照射9个月后,小鼠近端空肠和结肠中检测到单碳代谢途径的显著变化。这些变化表现为肠内蛋氨酸、s-腺苷蛋氨酸和谷胱甘肽组织浓度的减少,与结肠相比,空肠近端观察到的影响更为明显。这导致长间隔核苷酸元件-1 (LINE-1)的DNA甲基化缺失,表明存在全局低甲基化表型。分子变化的特征是空肠近端基因表达的大量失调,其中最明显的变化与Nos2表达的急剧丧失和Casp14的再激活有关,这表明肠道中氨基酸利用和上皮屏障的恢复可能发生变化。此外,Cldn5、Cldn6和Cldn10在暴露小鼠的近端空肠中被大量调节。微生物群分布的总体变化表现为总体丰富度和多样性的增加,然而,以牺牲共生细菌物种为代价,如Akkermansia。观察到的改变程度与研究中使用的相对较低的剂量、较晚的时间点和总体上缺乏组织形态学改变不一致。总之,我们的研究结果表明,暴露于与太空相关的质子辐射会导致小鼠肠道发生实质性和持续性的变化。观察到的影响的程度和性质表明,在深空探索期间暴露于质子辐射后可能对健康产生负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exposure to a Single Dose of Space-Relevant Proton Radiation Alters the Intestinal One-Carbon Metabolism Pathway and Microbiome in Mice.

Space radiation, primarily originating from galactic cosmic rays, is mainly composed of protons. Given NASA's plans for manned lunar and Mars missions, it is critical to assess the risk of proton radiation in disrupting tissue homeostasis, including in the intestine, which is a highly radiosensitive organ that harbors trillions of bacteria on the luminal surface. One-carbon metabolism encompasses the folate and methionine cycle and plays a crucial role in maintaining tissue homeostasis by regulating methylation, reductive metabolism, and nucleotide synthesis. However, the effects of proton radiation on intestinal one-carbon metabolism and the luminal microbiome profile are unknown. To address this, 6-month-old male C57BL/6J mice were exposed to a single dose of 0.5 Gy or 1.0 Gy of protons (150 MeV/n; dose rate = 35-55 cGy/min). Nine months after irradiation, significant shifts in the one-carbon metabolism pathway were detected in the mouse proximal jejunum and colon. These changes were exhibited as a loss of intra-intestinal methionine, s-adenosylmethionine, and glutathione tissue concentrations, with more pronounced effects being observed in the proximal jejunum compared to the colon. This resulted in the loss of DNA methylation within long-interspersed nucleotide element-1 (LINE-1), indicative of a global hypomethylative phenotype. Molecular changes were characterized by substantial dysregulation of gene expression in the proximal jejunum, where the most pronounced changes were associated with the dramatic loss of Nos2 expression and reactivation of Casp14, suggesting potential shifts in amino acid utilization and restoration of epithelial barriers in the gut. Furthermore, claudins Cldn5, Cldn6, and Cldn10 were substantially modulated in the proximal jejunum of exposed mice. Gross shifts in the microbiota profiles were exhibited as increases in both overall richness and diversity, however, at the expense of commensal bacterial species, like Akkermansia. The extent of the observed alterations was not congruent with the relatively low doses used in the study, the late time-point, and the overall lack of histomorphological alterations. Altogether, our findings demonstrate that exposure to space-relevant proton radiation causes substantial and persistent changes in the mouse gut. The degree and nature of the observed effects suggest the potential for negative health consequences after exposure to proton radiation during deep space exploration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiation research
Radiation research 医学-核医学
CiteScore
5.10
自引率
8.80%
发文量
179
审稿时长
1 months
期刊介绍: Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with chemical agents contributing to the understanding of radiation effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信