Marianne Victoria Lemée, Maria Nicla Loviglio, Tao Ye, Peggy Tilly, Céline Keime, Chantal Weber, Anastasiya Petrova, Pernelle Klein, Bastien Morlet, Olivia Wendling, Hugues Jacobs, Mylène Tharreau, David Geneviève, Juliette D Godin, Christophe Romier, Delphine Duteil, Christelle Golzio
{"title":"在神经发育过程中受CHD1L调控的转录网络中断是1q21.1拷贝数变异的镜像神经解剖学和生长表型的基础。","authors":"Marianne Victoria Lemée, Maria Nicla Loviglio, Tao Ye, Peggy Tilly, Céline Keime, Chantal Weber, Anastasiya Petrova, Pernelle Klein, Bastien Morlet, Olivia Wendling, Hugues Jacobs, Mylène Tharreau, David Geneviève, Juliette D Godin, Christophe Romier, Delphine Duteil, Christelle Golzio","doi":"10.1093/nar/gkaf934","DOIUrl":null,"url":null,"abstract":"<p><p>Distal 1q21.1 deletions and duplications are associated with variable phenotypes including autism, head circumference and height defects. To elucidate which gene(s) are responsible for the 1q21.1 duplication/deletion-associated phenotypes, we performed gene manipulation in zebrafish and mice. We modeled 1q21.1 duplication by overexpressing the eight human protein-coding genes in zebrafish. We found that only overexpression of CHD1L led to macrocephaly and increased larval body length, whereas chd1l deletion caused opposite phenotypes. These mirrored phenotypes were also observed in mouse embryos. Transcriptomic, cistromic, and chromatin accessibility analyses of CHD1L knock-out hiPSC-derived neuronal progenitor cells revealed that CHD1L regulates the expression levels and chromatin accessibility of genes involved in neuronal differentiation and synaptogenesis, including autism genes. Moreover, we found that CHD1L favors telencephalon development during forebrain regionalization by facilitating chromatin accessibility to pioneer transcription factors, including SOX2 and OTX2, while simultaneously compacting chromatin through its interaction with the repressor NuRD complex. Overall, our data reveal a novel role for CHD1L as a master regulator of cell fate and its dosage imbalance contributes to the neuroanatomical and growth phenotypes associated with the 1q21.1 distal CNV.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 18","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456972/pdf/","citationCount":"0","resultStr":"{\"title\":\"Disrupted transcriptional networks regulated by CHD1L during neurodevelopment underlie the mirrored neuroanatomical and growth phenotypes of the 1q21.1 copy number variant.\",\"authors\":\"Marianne Victoria Lemée, Maria Nicla Loviglio, Tao Ye, Peggy Tilly, Céline Keime, Chantal Weber, Anastasiya Petrova, Pernelle Klein, Bastien Morlet, Olivia Wendling, Hugues Jacobs, Mylène Tharreau, David Geneviève, Juliette D Godin, Christophe Romier, Delphine Duteil, Christelle Golzio\",\"doi\":\"10.1093/nar/gkaf934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Distal 1q21.1 deletions and duplications are associated with variable phenotypes including autism, head circumference and height defects. To elucidate which gene(s) are responsible for the 1q21.1 duplication/deletion-associated phenotypes, we performed gene manipulation in zebrafish and mice. We modeled 1q21.1 duplication by overexpressing the eight human protein-coding genes in zebrafish. We found that only overexpression of CHD1L led to macrocephaly and increased larval body length, whereas chd1l deletion caused opposite phenotypes. These mirrored phenotypes were also observed in mouse embryos. Transcriptomic, cistromic, and chromatin accessibility analyses of CHD1L knock-out hiPSC-derived neuronal progenitor cells revealed that CHD1L regulates the expression levels and chromatin accessibility of genes involved in neuronal differentiation and synaptogenesis, including autism genes. Moreover, we found that CHD1L favors telencephalon development during forebrain regionalization by facilitating chromatin accessibility to pioneer transcription factors, including SOX2 and OTX2, while simultaneously compacting chromatin through its interaction with the repressor NuRD complex. Overall, our data reveal a novel role for CHD1L as a master regulator of cell fate and its dosage imbalance contributes to the neuroanatomical and growth phenotypes associated with the 1q21.1 distal CNV.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"53 18\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456972/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf934\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf934","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Disrupted transcriptional networks regulated by CHD1L during neurodevelopment underlie the mirrored neuroanatomical and growth phenotypes of the 1q21.1 copy number variant.
Distal 1q21.1 deletions and duplications are associated with variable phenotypes including autism, head circumference and height defects. To elucidate which gene(s) are responsible for the 1q21.1 duplication/deletion-associated phenotypes, we performed gene manipulation in zebrafish and mice. We modeled 1q21.1 duplication by overexpressing the eight human protein-coding genes in zebrafish. We found that only overexpression of CHD1L led to macrocephaly and increased larval body length, whereas chd1l deletion caused opposite phenotypes. These mirrored phenotypes were also observed in mouse embryos. Transcriptomic, cistromic, and chromatin accessibility analyses of CHD1L knock-out hiPSC-derived neuronal progenitor cells revealed that CHD1L regulates the expression levels and chromatin accessibility of genes involved in neuronal differentiation and synaptogenesis, including autism genes. Moreover, we found that CHD1L favors telencephalon development during forebrain regionalization by facilitating chromatin accessibility to pioneer transcription factors, including SOX2 and OTX2, while simultaneously compacting chromatin through its interaction with the repressor NuRD complex. Overall, our data reveal a novel role for CHD1L as a master regulator of cell fate and its dosage imbalance contributes to the neuroanatomical and growth phenotypes associated with the 1q21.1 distal CNV.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.