三维(3D)打印辅助冷冻铸造加工的具有血管生成和骨再生能力的掺磷β-磷酸三钙仿生支架。

IF 4.9 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chenxu Wei, Zongan Li, Xiaoyun Liang, Yuwei Zhao, Xingyu Zhu, Haibing Hua, Guobao Chen, Kunming Qin, Zhipeng Chen, Changcan Shi, Feng Zhang, Weidong Li
{"title":"三维(3D)打印辅助冷冻铸造加工的具有血管生成和骨再生能力的掺磷β-磷酸三钙仿生支架。","authors":"Chenxu Wei, Zongan Li, Xiaoyun Liang, Yuwei Zhao, Xingyu Zhu, Haibing Hua, Guobao Chen, Kunming Qin, Zhipeng Chen, Changcan Shi, Feng Zhang, Weidong Li","doi":"10.1631/jzus.B2400340","DOIUrl":null,"url":null,"abstract":"<p><p>Bone repair remains an important target in tissue engineering, making the development of bioactive scaffolds for effective bone defect repair a critical objective. In this study, β-tricalcium phosphate (β-TCP) scaffolds incorporated with processed pyritum decoction (PPD) were fabricated using three-dimensional (3D) printing-assisted freeze-casting. The produced composite scaffolds were evaluated for their mechanical strength, physicochemical properties, biocompatibility, in vitro pro-angiogenic activity, and in vivo efficacy in repairing rabbit femoral defects. They not only demonstrated excellent physicochemical properties, enhanced mechanical strength, and good biosafety but also significantly promoted the proliferation, migration, and aggregation of pro-angiogenic human umbilical vein endothelial cells (HUVECs). In vivo studies revealed that all scaffold groups facilitated osteogenesis at the bone defect site, with the β-TCP scaffolds loaded with PPD markedly enhancing the expression of neurogenic locus Notch homolog protein 1 (Notch1), vascular endothelial growth factor (VEGF), bone morphogenetic protein-2 (BMP-2), and osteopontin (OPN). Overall, the scaffolds developed in this study exhibited strong angiogenic and osteogenic capabilities both in vitro and in vivo. The incorporation of PPD notably promoted the angiogenic-osteogenic coupling, thereby accelerating bone repair, which suggests that PPD is a promising material for bone repair and that the PPD/β-TCP scaffolds hold great potential as a bone graft alternative.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"26 9","pages":"863-880"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456995/pdf/","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional (3D) printing-assisted freeze-casting of processed pyritum-doped β-tricalcium phosphate biomimetic scaffold with angiogenesis and bone regeneration capability.\",\"authors\":\"Chenxu Wei, Zongan Li, Xiaoyun Liang, Yuwei Zhao, Xingyu Zhu, Haibing Hua, Guobao Chen, Kunming Qin, Zhipeng Chen, Changcan Shi, Feng Zhang, Weidong Li\",\"doi\":\"10.1631/jzus.B2400340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone repair remains an important target in tissue engineering, making the development of bioactive scaffolds for effective bone defect repair a critical objective. In this study, β-tricalcium phosphate (β-TCP) scaffolds incorporated with processed pyritum decoction (PPD) were fabricated using three-dimensional (3D) printing-assisted freeze-casting. The produced composite scaffolds were evaluated for their mechanical strength, physicochemical properties, biocompatibility, in vitro pro-angiogenic activity, and in vivo efficacy in repairing rabbit femoral defects. They not only demonstrated excellent physicochemical properties, enhanced mechanical strength, and good biosafety but also significantly promoted the proliferation, migration, and aggregation of pro-angiogenic human umbilical vein endothelial cells (HUVECs). In vivo studies revealed that all scaffold groups facilitated osteogenesis at the bone defect site, with the β-TCP scaffolds loaded with PPD markedly enhancing the expression of neurogenic locus Notch homolog protein 1 (Notch1), vascular endothelial growth factor (VEGF), bone morphogenetic protein-2 (BMP-2), and osteopontin (OPN). Overall, the scaffolds developed in this study exhibited strong angiogenic and osteogenic capabilities both in vitro and in vivo. The incorporation of PPD notably promoted the angiogenic-osteogenic coupling, thereby accelerating bone repair, which suggests that PPD is a promising material for bone repair and that the PPD/β-TCP scaffolds hold great potential as a bone graft alternative.</p>\",\"PeriodicalId\":17797,\"journal\":{\"name\":\"Journal of Zhejiang University SCIENCE B\",\"volume\":\"26 9\",\"pages\":\"863-880\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456995/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zhejiang University SCIENCE B\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1631/jzus.B2400340\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University SCIENCE B","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1631/jzus.B2400340","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骨修复是组织工程研究的一个重要目标,开发具有生物活性的骨缺损修复支架是一个重要的目标。本研究采用三维(3D)打印辅助冷冻铸造的方法,制备了加入加工过的吡啶煎剂(PPD)的β-磷酸三钙(β-TCP)支架。对制备的复合支架进行机械强度、理化性能、生物相容性、体外促血管生成活性和体内修复兔股骨缺损的效果评价。它们不仅表现出优异的理化性能、增强的机械强度和良好的生物安全性,而且还能显著促进促血管生成的人脐静脉内皮细胞(HUVECs)的增殖、迁移和聚集。体内研究显示,所有支架组均促进骨缺损部位的成骨,加载PPD的β-TCP支架显著增强神经源性位点Notch同源蛋白1 (Notch1)、血管内皮生长因子(VEGF)、骨形态发生蛋白-2 (BMP-2)和骨桥蛋白(OPN)的表达。总体而言,本研究中开发的支架在体外和体内均表现出较强的血管生成和成骨能力。PPD的掺入显著促进了血管生成-成骨耦合,从而加速了骨修复,这表明PPD是一种很有前途的骨修复材料,PPD/β-TCP支架作为骨移植替代品具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional (3D) printing-assisted freeze-casting of processed pyritum-doped β-tricalcium phosphate biomimetic scaffold with angiogenesis and bone regeneration capability.

Bone repair remains an important target in tissue engineering, making the development of bioactive scaffolds for effective bone defect repair a critical objective. In this study, β-tricalcium phosphate (β-TCP) scaffolds incorporated with processed pyritum decoction (PPD) were fabricated using three-dimensional (3D) printing-assisted freeze-casting. The produced composite scaffolds were evaluated for their mechanical strength, physicochemical properties, biocompatibility, in vitro pro-angiogenic activity, and in vivo efficacy in repairing rabbit femoral defects. They not only demonstrated excellent physicochemical properties, enhanced mechanical strength, and good biosafety but also significantly promoted the proliferation, migration, and aggregation of pro-angiogenic human umbilical vein endothelial cells (HUVECs). In vivo studies revealed that all scaffold groups facilitated osteogenesis at the bone defect site, with the β-TCP scaffolds loaded with PPD markedly enhancing the expression of neurogenic locus Notch homolog protein 1 (Notch1), vascular endothelial growth factor (VEGF), bone morphogenetic protein-2 (BMP-2), and osteopontin (OPN). Overall, the scaffolds developed in this study exhibited strong angiogenic and osteogenic capabilities both in vitro and in vivo. The incorporation of PPD notably promoted the angiogenic-osteogenic coupling, thereby accelerating bone repair, which suggests that PPD is a promising material for bone repair and that the PPD/β-TCP scaffolds hold great potential as a bone graft alternative.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Zhejiang University SCIENCE B
Journal of Zhejiang University SCIENCE B 生物-生化与分子生物学
CiteScore
8.70
自引率
13.70%
发文量
2125
审稿时长
3.0 months
期刊介绍: Journal of Zheijang University SCIENCE B - Biomedicine & Biotechnology is an international journal that aims to present the latest development and achievements in scientific research in China and abroad to the world’s scientific community. JZUS-B covers research in Biomedicine and Biotechnology and Biochemistry and topics related to life science subjects, such as Plant and Animal Sciences, Environment and Resource etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信