对蚜虫嗅觉和味觉受体基因及其转座因子的综合注释揭示了它们的进化动态。

IF 5.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sergio Gabriel Olvera-Vazquez, Xilong Chen, Aurélie Mesnil, Camille Meslin, Fabricio Almeida-Silva, Johann Confais, Yann Bourgeois, Gianluca Lombardi, Célia Lougmani, Karine Alix, Nicolas Francillonne, Nathalie Choisne, Stephane Cauet, Jean-Christophe Simon, Christelle Buchard, Nathalie Rodde, David Ogereau, Claire Mottet, Alexandre Degrave, Elorri Segura, Alessandra Carbone, Barrès Benoît, Emmanuelle Jacquin-Joly, William Marande, Dominique Lavenier, Fabrice Legeai, Amandine Cornille
{"title":"对蚜虫嗅觉和味觉受体基因及其转座因子的综合注释揭示了它们的进化动态。","authors":"Sergio Gabriel Olvera-Vazquez, Xilong Chen, Aurélie Mesnil, Camille Meslin, Fabricio Almeida-Silva, Johann Confais, Yann Bourgeois, Gianluca Lombardi, Célia Lougmani, Karine Alix, Nicolas Francillonne, Nathalie Choisne, Stephane Cauet, Jean-Christophe Simon, Christelle Buchard, Nathalie Rodde, David Ogereau, Claire Mottet, Alexandre Degrave, Elorri Segura, Alessandra Carbone, Barrès Benoît, Emmanuelle Jacquin-Joly, William Marande, Dominique Lavenier, Fabrice Legeai, Amandine Cornille","doi":"10.1093/molbev/msaf238","DOIUrl":null,"url":null,"abstract":"<p><p>Gene duplication and transposable elements (TEs) are major drivers of genomic innovation that can fuel adaptation. While the roles of duplication and TE-driven diversification are documented in plant pathogens, they remain insufficiently explored in insect pests such as aphids, where olfactory (OR) and gustatory receptor (GR) genes are key to host recognition. We analyzed 521 OR and 399 GR genes, alongside TEs, across 12 aphid genomes with varying host ranges. Aphid lineages with broader host ranges exhibited higher evolutionary rates, driven by gene family expansions linked to host interaction, including lipid metabolism, immune function, and transposase activity. OR and GR genes evolved through proximal and tandem duplications and were shaped by diversifying selection, with bursts of positive selection followed by prolonged purifying selection, consistent with adaptation to novel hosts. Younger TEs were significantly enriched near OR genes compared to GRs and other genomic regions, suggesting a catalytic role of TEs in their diversification. However, OR proteins encoded by TE-associated ORs exhibited reduced functional potential. In contrast, GR proteins encoded by TE-associated GRs retained signatures of adaptation, as inferred from deep learning models predicting functionally important protein regions. These findings suggest that TE activity may facilitate functional innovation in GRs while alleviating constraints or pseudogenization in ORs. This study reveals how duplication, selection, and TE dynamics shape gene evolution in insect pests. It also provides the first chromosome-scale genome assembly of Dysaphis plantaginea, with comprehensive annotations and functional predictions of OR/GR genes, bridging adaptive evolution with mechanistic insights.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive annotation of olfactory and gustatory receptor genes and transposable elements revealed their evolutionary dynamics in aphids.\",\"authors\":\"Sergio Gabriel Olvera-Vazquez, Xilong Chen, Aurélie Mesnil, Camille Meslin, Fabricio Almeida-Silva, Johann Confais, Yann Bourgeois, Gianluca Lombardi, Célia Lougmani, Karine Alix, Nicolas Francillonne, Nathalie Choisne, Stephane Cauet, Jean-Christophe Simon, Christelle Buchard, Nathalie Rodde, David Ogereau, Claire Mottet, Alexandre Degrave, Elorri Segura, Alessandra Carbone, Barrès Benoît, Emmanuelle Jacquin-Joly, William Marande, Dominique Lavenier, Fabrice Legeai, Amandine Cornille\",\"doi\":\"10.1093/molbev/msaf238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene duplication and transposable elements (TEs) are major drivers of genomic innovation that can fuel adaptation. While the roles of duplication and TE-driven diversification are documented in plant pathogens, they remain insufficiently explored in insect pests such as aphids, where olfactory (OR) and gustatory receptor (GR) genes are key to host recognition. We analyzed 521 OR and 399 GR genes, alongside TEs, across 12 aphid genomes with varying host ranges. Aphid lineages with broader host ranges exhibited higher evolutionary rates, driven by gene family expansions linked to host interaction, including lipid metabolism, immune function, and transposase activity. OR and GR genes evolved through proximal and tandem duplications and were shaped by diversifying selection, with bursts of positive selection followed by prolonged purifying selection, consistent with adaptation to novel hosts. Younger TEs were significantly enriched near OR genes compared to GRs and other genomic regions, suggesting a catalytic role of TEs in their diversification. However, OR proteins encoded by TE-associated ORs exhibited reduced functional potential. In contrast, GR proteins encoded by TE-associated GRs retained signatures of adaptation, as inferred from deep learning models predicting functionally important protein regions. These findings suggest that TE activity may facilitate functional innovation in GRs while alleviating constraints or pseudogenization in ORs. This study reveals how duplication, selection, and TE dynamics shape gene evolution in insect pests. It also provides the first chromosome-scale genome assembly of Dysaphis plantaginea, with comprehensive annotations and functional predictions of OR/GR genes, bridging adaptive evolution with mechanistic insights.</p>\",\"PeriodicalId\":18730,\"journal\":{\"name\":\"Molecular biology and evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular biology and evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/molbev/msaf238\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msaf238","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基因复制和转座因子(te)是基因组创新的主要驱动力,可以促进适应。虽然复制和te驱动的多样化在植物病原体中的作用已被记录,但它们在蚜虫等害虫中的作用仍未得到充分探索,其中嗅觉(OR)和味觉受体(GR)基因是宿主识别的关键。我们分析了12个不同寄主范围的蚜虫基因组中的521个OR基因和399个GR基因以及te基因。寄主范围更广的蚜虫谱系表现出更高的进化速度,这是由与寄主相互作用相关的基因家族扩展所驱动的,包括脂质代谢、免疫功能和转座酶活性。OR和GR基因是通过近端和串联复制进化而来的,并通过多样化选择形成,先是爆发积极选择,然后是长时间的净化选择,与对新宿主的适应一致。与GRs和其他基因组区域相比,较年轻的te在OR基因附近显著富集,表明te在其多样化中起着催化作用。然而,te相关OR编码的OR蛋白表现出降低的功能电位。相比之下,由te相关GR编码的GR蛋白保留了适应特征,这是从预测功能重要蛋白区域的深度学习模型推断出来的。这些发现表明,TE活动可能促进GRs的功能创新,同时减轻ORs的限制或假性。本研究揭示了复制、选择和TE动力学如何影响害虫的基因进化。它还提供了车前草(Dysaphis plantaginea)第一个染色体尺度的基因组组装,对OR/GR基因进行了全面的注释和功能预测,将适应进化与机制见解联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive annotation of olfactory and gustatory receptor genes and transposable elements revealed their evolutionary dynamics in aphids.

Gene duplication and transposable elements (TEs) are major drivers of genomic innovation that can fuel adaptation. While the roles of duplication and TE-driven diversification are documented in plant pathogens, they remain insufficiently explored in insect pests such as aphids, where olfactory (OR) and gustatory receptor (GR) genes are key to host recognition. We analyzed 521 OR and 399 GR genes, alongside TEs, across 12 aphid genomes with varying host ranges. Aphid lineages with broader host ranges exhibited higher evolutionary rates, driven by gene family expansions linked to host interaction, including lipid metabolism, immune function, and transposase activity. OR and GR genes evolved through proximal and tandem duplications and were shaped by diversifying selection, with bursts of positive selection followed by prolonged purifying selection, consistent with adaptation to novel hosts. Younger TEs were significantly enriched near OR genes compared to GRs and other genomic regions, suggesting a catalytic role of TEs in their diversification. However, OR proteins encoded by TE-associated ORs exhibited reduced functional potential. In contrast, GR proteins encoded by TE-associated GRs retained signatures of adaptation, as inferred from deep learning models predicting functionally important protein regions. These findings suggest that TE activity may facilitate functional innovation in GRs while alleviating constraints or pseudogenization in ORs. This study reveals how duplication, selection, and TE dynamics shape gene evolution in insect pests. It also provides the first chromosome-scale genome assembly of Dysaphis plantaginea, with comprehensive annotations and functional predictions of OR/GR genes, bridging adaptive evolution with mechanistic insights.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular biology and evolution
Molecular biology and evolution 生物-进化生物学
CiteScore
19.70
自引率
3.70%
发文量
257
审稿时长
1 months
期刊介绍: Molecular Biology and Evolution Journal Overview: Publishes research at the interface of molecular (including genomics) and evolutionary biology Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信