{"title":"基于水凝胶的疫苗:一种有前途的癌症免疫治疗方法。","authors":"Wenqin Zhang, Qingfu Zhang, Jiaodi Cai, Jin He, Zhijie Xu, Xiang Chen, Guoqun Chen","doi":"10.2147/IJN.S526305","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer vaccines, as a cornerstone of personalized immunotherapy, inhibit malignant growth through activation of a comprehensive immune defense mechanism across the organism. However, the immunosuppressive tumor environment (TME) and evasion mechanisms produced by tumors, coupled with the suboptimal immunogenic activation from vaccine-based approaches, collectively constrain therapeutic outcomes in precision immuno-oncology. Consequently, cancer vaccines have yet to realize their broad clinical translation into routine patients. Achieving controlled biodistribution and optimized pharmacokinetics of therapeutic immunization platforms within biological systems, thereby instigating durable and vigorous antitumor immunity, remains a significant challenge. To overcome these limitations, innovative administration platforms are under investigation, with hydrogel-based matrices gaining traction as effective vehicles owing to their inherent physicochemical advantages. Furthermore, recent years have witnessed accelerated advancements in hydrogel-based systems for anticancer immunization. This analysis systematically outlines the therapeutic implementations and functional mechanisms of cancer vaccines, followed by an analysis of the structural and functional properties of hydrogel-based delivery carrier. We then categorize hydrogel-based cancer vaccines and summarize their current application situation. Subsequently, a detailed overview of antitumor immune cascades orchestrated by hydrogel-integrated immunization platforms is methodically presented. Finally, we conclude with forward-looking perspectives on hydrogel-mediated therapeutic vectors.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"11389-11415"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452989/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hydrogel-Based Vaccines: A Promising Approach for Cancer Immunotherapy.\",\"authors\":\"Wenqin Zhang, Qingfu Zhang, Jiaodi Cai, Jin He, Zhijie Xu, Xiang Chen, Guoqun Chen\",\"doi\":\"10.2147/IJN.S526305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer vaccines, as a cornerstone of personalized immunotherapy, inhibit malignant growth through activation of a comprehensive immune defense mechanism across the organism. However, the immunosuppressive tumor environment (TME) and evasion mechanisms produced by tumors, coupled with the suboptimal immunogenic activation from vaccine-based approaches, collectively constrain therapeutic outcomes in precision immuno-oncology. Consequently, cancer vaccines have yet to realize their broad clinical translation into routine patients. Achieving controlled biodistribution and optimized pharmacokinetics of therapeutic immunization platforms within biological systems, thereby instigating durable and vigorous antitumor immunity, remains a significant challenge. To overcome these limitations, innovative administration platforms are under investigation, with hydrogel-based matrices gaining traction as effective vehicles owing to their inherent physicochemical advantages. Furthermore, recent years have witnessed accelerated advancements in hydrogel-based systems for anticancer immunization. This analysis systematically outlines the therapeutic implementations and functional mechanisms of cancer vaccines, followed by an analysis of the structural and functional properties of hydrogel-based delivery carrier. We then categorize hydrogel-based cancer vaccines and summarize their current application situation. Subsequently, a detailed overview of antitumor immune cascades orchestrated by hydrogel-integrated immunization platforms is methodically presented. Finally, we conclude with forward-looking perspectives on hydrogel-mediated therapeutic vectors.</p>\",\"PeriodicalId\":14084,\"journal\":{\"name\":\"International Journal of Nanomedicine\",\"volume\":\"20 \",\"pages\":\"11389-11415\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452989/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJN.S526305\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S526305","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Hydrogel-Based Vaccines: A Promising Approach for Cancer Immunotherapy.
Cancer vaccines, as a cornerstone of personalized immunotherapy, inhibit malignant growth through activation of a comprehensive immune defense mechanism across the organism. However, the immunosuppressive tumor environment (TME) and evasion mechanisms produced by tumors, coupled with the suboptimal immunogenic activation from vaccine-based approaches, collectively constrain therapeutic outcomes in precision immuno-oncology. Consequently, cancer vaccines have yet to realize their broad clinical translation into routine patients. Achieving controlled biodistribution and optimized pharmacokinetics of therapeutic immunization platforms within biological systems, thereby instigating durable and vigorous antitumor immunity, remains a significant challenge. To overcome these limitations, innovative administration platforms are under investigation, with hydrogel-based matrices gaining traction as effective vehicles owing to their inherent physicochemical advantages. Furthermore, recent years have witnessed accelerated advancements in hydrogel-based systems for anticancer immunization. This analysis systematically outlines the therapeutic implementations and functional mechanisms of cancer vaccines, followed by an analysis of the structural and functional properties of hydrogel-based delivery carrier. We then categorize hydrogel-based cancer vaccines and summarize their current application situation. Subsequently, a detailed overview of antitumor immune cascades orchestrated by hydrogel-integrated immunization platforms is methodically presented. Finally, we conclude with forward-looking perspectives on hydrogel-mediated therapeutic vectors.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.