{"title":"不同植物生长促进菌在银合欢根瘤中的微共生体。","authors":"Gaurav Kumar, Anjali Chauhan, Shubham Sharma, Manisha Saini","doi":"10.1007/s12223-025-01341-w","DOIUrl":null,"url":null,"abstract":"<p><p>This study characterized 18 endophytic bacterial isolates in association with the root nodules of Leucaena leucocephala through phenotypic and genotypic analyses. The endophytes were associated with the plants and exhibited diverse plant growth-promoting (PGP) traits. Phosphate solubilization was observed in 39% of isolates at high levels and 33.3% at moderate levels. Siderophore production was prevalent, with 38.9% displaying high and 33.3% moderate production, aiding iron uptake. Indole-3-acetic acid (IAA) production varied (32.15 to 86.28 µg/ml) among the isolates. Notably, 94.4% of isolates showed positive hydrogen cyanide (HCN) production. Genetic diversity was assessed using the ARDRA clustered the isolates into eight morphotypes, whereas the phylogenetic analysis of the 16S rDNA sequences showed the presence of different genera including Rhizobium, Paenibacillus, Bacillus, Agrobacterium, Brucella, and Arthrobacter. On the other hand, these symbiotic endophytes are widely recognized for their mechanisms of plant growth promotion. Therefore, net house studies with rhizobial inoculation on L. leucocephala showed significant improvements in growth parameters such as shoot and root lengths, biomass, and nodulation, particularly with the strain Rhizobium sp. SoL9 (T3). Inoculation also enhanced soil properties, increasing nutrient availability and microbial populations. These endophytic bacterial isolates from L. leucocephala root nodules display genetic diversity and beneficial PGP traits, highlighting the potential for rhizobial biofertilization in enhancing plant development and soil fertility in legumes.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diverse plant growth-promoting bacteria as microsymbionts in nodules of Leucaena leucocephala.\",\"authors\":\"Gaurav Kumar, Anjali Chauhan, Shubham Sharma, Manisha Saini\",\"doi\":\"10.1007/s12223-025-01341-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study characterized 18 endophytic bacterial isolates in association with the root nodules of Leucaena leucocephala through phenotypic and genotypic analyses. The endophytes were associated with the plants and exhibited diverse plant growth-promoting (PGP) traits. Phosphate solubilization was observed in 39% of isolates at high levels and 33.3% at moderate levels. Siderophore production was prevalent, with 38.9% displaying high and 33.3% moderate production, aiding iron uptake. Indole-3-acetic acid (IAA) production varied (32.15 to 86.28 µg/ml) among the isolates. Notably, 94.4% of isolates showed positive hydrogen cyanide (HCN) production. Genetic diversity was assessed using the ARDRA clustered the isolates into eight morphotypes, whereas the phylogenetic analysis of the 16S rDNA sequences showed the presence of different genera including Rhizobium, Paenibacillus, Bacillus, Agrobacterium, Brucella, and Arthrobacter. On the other hand, these symbiotic endophytes are widely recognized for their mechanisms of plant growth promotion. Therefore, net house studies with rhizobial inoculation on L. leucocephala showed significant improvements in growth parameters such as shoot and root lengths, biomass, and nodulation, particularly with the strain Rhizobium sp. SoL9 (T3). Inoculation also enhanced soil properties, increasing nutrient availability and microbial populations. These endophytic bacterial isolates from L. leucocephala root nodules display genetic diversity and beneficial PGP traits, highlighting the potential for rhizobial biofertilization in enhancing plant development and soil fertility in legumes.</p>\",\"PeriodicalId\":12346,\"journal\":{\"name\":\"Folia microbiologica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia microbiologica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12223-025-01341-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia microbiologica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12223-025-01341-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Diverse plant growth-promoting bacteria as microsymbionts in nodules of Leucaena leucocephala.
This study characterized 18 endophytic bacterial isolates in association with the root nodules of Leucaena leucocephala through phenotypic and genotypic analyses. The endophytes were associated with the plants and exhibited diverse plant growth-promoting (PGP) traits. Phosphate solubilization was observed in 39% of isolates at high levels and 33.3% at moderate levels. Siderophore production was prevalent, with 38.9% displaying high and 33.3% moderate production, aiding iron uptake. Indole-3-acetic acid (IAA) production varied (32.15 to 86.28 µg/ml) among the isolates. Notably, 94.4% of isolates showed positive hydrogen cyanide (HCN) production. Genetic diversity was assessed using the ARDRA clustered the isolates into eight morphotypes, whereas the phylogenetic analysis of the 16S rDNA sequences showed the presence of different genera including Rhizobium, Paenibacillus, Bacillus, Agrobacterium, Brucella, and Arthrobacter. On the other hand, these symbiotic endophytes are widely recognized for their mechanisms of plant growth promotion. Therefore, net house studies with rhizobial inoculation on L. leucocephala showed significant improvements in growth parameters such as shoot and root lengths, biomass, and nodulation, particularly with the strain Rhizobium sp. SoL9 (T3). Inoculation also enhanced soil properties, increasing nutrient availability and microbial populations. These endophytic bacterial isolates from L. leucocephala root nodules display genetic diversity and beneficial PGP traits, highlighting the potential for rhizobial biofertilization in enhancing plant development and soil fertility in legumes.
期刊介绍:
Unlike journals which specialize ever more narrowly, Folia Microbiologica (FM) takes an open approach that spans general, soil, medical and industrial microbiology, plus some branches of immunology. This English-language journal publishes original papers, reviews and mini-reviews, short communications and book reviews. The coverage includes cutting-edge methods and promising new topics, as well as studies using established methods that exhibit promise in practical applications such as medicine, animal husbandry and more. The coverage of FM is expanding beyond Central and Eastern Europe, with a growing proportion of its contents contributed by international authors.