灯笼状变径支架用于TMVR的人工二尖瓣设计与数值分析。

IF 2.7 3区 医学 Q2 BIOPHYSICS
Xuechao Ding, Shiliang Chen, Tianming Du, Yanping Zhang, Shengwen Liu, Aike Qiao
{"title":"灯笼状变径支架用于TMVR的人工二尖瓣设计与数值分析。","authors":"Xuechao Ding, Shiliang Chen, Tianming Du, Yanping Zhang, Shengwen Liu, Aike Qiao","doi":"10.1007/s10237-025-02008-8","DOIUrl":null,"url":null,"abstract":"<p><p>Transcatheter mitral valve replacement (TMVR) faces challenges of stent migration and left ventricular outflow tract (LVOT) obstruction. Traditional stents fail to meet the demands of systolic high pressure, dynamic saddle-shaped annular contraction, and diastolic LVOT protection, while auxiliary anchoring devices may cause tissue damage. To address these issues, we propose a dual-layer lantern-shaped nitinol stent (L-NiTi) with a pressure-responsive diameter modulation. Using SAPIEN 3 Ultra cylindrical cobalt-chromium (C-CoCr) and cylindrical nitinol (C-NiTi) stents as controls, we constructed a finite element native valve stent prosthesis interaction model under cardiac cycle pressure loading to quantify the performance of the stents. Results showed that the L-NiTi exhibited a maximum strain of 8.9%, a 9.17% ± 3.12% loss in prosthetic leaflet area (compared to a 23% loss in controls), a 34 N increase in systolic migration resistance, and an axial displacement of 1.28 mm (compared to 2.16 and 4.78 mm in C-CoCr and C-NiTi controls, respectively). The improved asymmetric lantern-shaped stent maintained a 32 N increase in migration resistance while increasing the neo-LVOT area from 2.52 to 2.81 cm<sup>2</sup>. The proposed new design of stent for TMVR enhances anchoring without compromising LVOT, demonstrating translational potential for TMVR.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and numerical analysis of a prosthetic mitral valve with a lantern-shaped variable diameter stent for TMVR.\",\"authors\":\"Xuechao Ding, Shiliang Chen, Tianming Du, Yanping Zhang, Shengwen Liu, Aike Qiao\",\"doi\":\"10.1007/s10237-025-02008-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transcatheter mitral valve replacement (TMVR) faces challenges of stent migration and left ventricular outflow tract (LVOT) obstruction. Traditional stents fail to meet the demands of systolic high pressure, dynamic saddle-shaped annular contraction, and diastolic LVOT protection, while auxiliary anchoring devices may cause tissue damage. To address these issues, we propose a dual-layer lantern-shaped nitinol stent (L-NiTi) with a pressure-responsive diameter modulation. Using SAPIEN 3 Ultra cylindrical cobalt-chromium (C-CoCr) and cylindrical nitinol (C-NiTi) stents as controls, we constructed a finite element native valve stent prosthesis interaction model under cardiac cycle pressure loading to quantify the performance of the stents. Results showed that the L-NiTi exhibited a maximum strain of 8.9%, a 9.17% ± 3.12% loss in prosthetic leaflet area (compared to a 23% loss in controls), a 34 N increase in systolic migration resistance, and an axial displacement of 1.28 mm (compared to 2.16 and 4.78 mm in C-CoCr and C-NiTi controls, respectively). The improved asymmetric lantern-shaped stent maintained a 32 N increase in migration resistance while increasing the neo-LVOT area from 2.52 to 2.81 cm<sup>2</sup>. The proposed new design of stent for TMVR enhances anchoring without compromising LVOT, demonstrating translational potential for TMVR.</p>\",\"PeriodicalId\":489,\"journal\":{\"name\":\"Biomechanics and Modeling in Mechanobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics and Modeling in Mechanobiology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10237-025-02008-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-025-02008-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

经导管二尖瓣置换术(TMVR)面临支架移位和左心室流出道阻塞的挑战。传统支架不能满足收缩期高压、动态鞍形环状收缩和舒张期LVOT保护的需要,辅助锚定装置可能造成组织损伤。为了解决这些问题,我们提出了一种具有压力响应直径调制的双层灯笼状镍钛诺支架(L-NiTi)。以SAPIEN 3超圆柱形钴铬(C-CoCr)和圆柱形镍钛诺(C-NiTi)支架为对照,构建心周期压力负荷下的有限元天然瓣膜支架假体相互作用模型,量化支架的性能。结果显示,L-NiTi的最大应变为8.9%,假体叶面积损失9.17%±3.12%(对照组损失23%),收缩迁移阻力增加34 N,轴向位移1.28 mm (C-CoCr和C-NiTi对照组分别为2.16和4.78 mm)。改进后的不对称灯形支架在将新lvot面积从2.52增加到2.81 cm2的同时,其迁移阻力增加了32 N。提出的TMVR支架新设计在不影响LVOT的情况下增强了锚定,展示了TMVR的转化潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and numerical analysis of a prosthetic mitral valve with a lantern-shaped variable diameter stent for TMVR.

Transcatheter mitral valve replacement (TMVR) faces challenges of stent migration and left ventricular outflow tract (LVOT) obstruction. Traditional stents fail to meet the demands of systolic high pressure, dynamic saddle-shaped annular contraction, and diastolic LVOT protection, while auxiliary anchoring devices may cause tissue damage. To address these issues, we propose a dual-layer lantern-shaped nitinol stent (L-NiTi) with a pressure-responsive diameter modulation. Using SAPIEN 3 Ultra cylindrical cobalt-chromium (C-CoCr) and cylindrical nitinol (C-NiTi) stents as controls, we constructed a finite element native valve stent prosthesis interaction model under cardiac cycle pressure loading to quantify the performance of the stents. Results showed that the L-NiTi exhibited a maximum strain of 8.9%, a 9.17% ± 3.12% loss in prosthetic leaflet area (compared to a 23% loss in controls), a 34 N increase in systolic migration resistance, and an axial displacement of 1.28 mm (compared to 2.16 and 4.78 mm in C-CoCr and C-NiTi controls, respectively). The improved asymmetric lantern-shaped stent maintained a 32 N increase in migration resistance while increasing the neo-LVOT area from 2.52 to 2.81 cm2. The proposed new design of stent for TMVR enhances anchoring without compromising LVOT, demonstrating translational potential for TMVR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信