{"title":"有机电子用自掺杂苝和萘二亚胺材料。","authors":"Pinyu Chen, Jiulong Zhang, Chengshan Yuan, Xiangfeng Shao, Hao-Li Zhang, Zitong Liu","doi":"10.1002/cplu.202500301","DOIUrl":null,"url":null,"abstract":"<p><p>Self-doping has emerged as an effective strategy to tailor the electronic properties of organic materials, especially for n-type semiconductors based on perylene diimide (PDI) and naphthalene diimide (NDI). This review summarizes recent progress in the molecular design and application of self-doped PDI/NDI systems. Representative self-doping groups such as amines, ammonium salts, and other anionic species are introduced and classified. The effects of doping group connecting site selection, including the imide position, aromatic core, and side substitutes, on molecular and electronic properties are then discussed. The application of self-doped PDI/NDI materials in organic electronic devices is also highlighted, covering thin-film solar cells, organic field-effect transistors, and organic thermoelectrics. These materials have shown the ability to improve charge injection, enhance device stability, and regulate interfacial processes. Overall, self-doping is a promising strategy for developing high-performance n-type organic semiconductors. With ongoing improvements in molecular design and device engineering, self-doped PDI/NDI materials are expected to contribute significantly to the advancement of next-generation electronic materials and devices.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202500301"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Doped Perylene and Naphthalene Diimide Materials for Organic Electronics.\",\"authors\":\"Pinyu Chen, Jiulong Zhang, Chengshan Yuan, Xiangfeng Shao, Hao-Li Zhang, Zitong Liu\",\"doi\":\"10.1002/cplu.202500301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Self-doping has emerged as an effective strategy to tailor the electronic properties of organic materials, especially for n-type semiconductors based on perylene diimide (PDI) and naphthalene diimide (NDI). This review summarizes recent progress in the molecular design and application of self-doped PDI/NDI systems. Representative self-doping groups such as amines, ammonium salts, and other anionic species are introduced and classified. The effects of doping group connecting site selection, including the imide position, aromatic core, and side substitutes, on molecular and electronic properties are then discussed. The application of self-doped PDI/NDI materials in organic electronic devices is also highlighted, covering thin-film solar cells, organic field-effect transistors, and organic thermoelectrics. These materials have shown the ability to improve charge injection, enhance device stability, and regulate interfacial processes. Overall, self-doping is a promising strategy for developing high-performance n-type organic semiconductors. With ongoing improvements in molecular design and device engineering, self-doped PDI/NDI materials are expected to contribute significantly to the advancement of next-generation electronic materials and devices.</p>\",\"PeriodicalId\":148,\"journal\":{\"name\":\"ChemPlusChem\",\"volume\":\" \",\"pages\":\"e202500301\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPlusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cplu.202500301\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202500301","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Self-Doped Perylene and Naphthalene Diimide Materials for Organic Electronics.
Self-doping has emerged as an effective strategy to tailor the electronic properties of organic materials, especially for n-type semiconductors based on perylene diimide (PDI) and naphthalene diimide (NDI). This review summarizes recent progress in the molecular design and application of self-doped PDI/NDI systems. Representative self-doping groups such as amines, ammonium salts, and other anionic species are introduced and classified. The effects of doping group connecting site selection, including the imide position, aromatic core, and side substitutes, on molecular and electronic properties are then discussed. The application of self-doped PDI/NDI materials in organic electronic devices is also highlighted, covering thin-film solar cells, organic field-effect transistors, and organic thermoelectrics. These materials have shown the ability to improve charge injection, enhance device stability, and regulate interfacial processes. Overall, self-doping is a promising strategy for developing high-performance n-type organic semiconductors. With ongoing improvements in molecular design and device engineering, self-doped PDI/NDI materials are expected to contribute significantly to the advancement of next-generation electronic materials and devices.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.