{"title":"干旱的微生物记忆重塑根相关群落,增强植物的抗灾能力。","authors":"Hongyin Qi, Xin Wen, Ziyue Wang, Shuxia Yin","doi":"10.1111/pce.70200","DOIUrl":null,"url":null,"abstract":"<p><p>Global climate change has increased the frequency and severity of droughts, posing significant threats to grassland ecosystems. As a dominant species in meadow steppe in northern China's grasslands, Leymus chinensis exhibits excellent drought resistance, yet the interaction mechanisms between its drought resistance and rhizosphere microbial communities remain unclear. This study simulated short-term drought cycles (0-3) and combined high-throughput sequencing with microbial transplantation experiments to investigate rhizosphere and bulk soil microbial responses to drought and their regulatory effects on host drought resistance. Key findings include: (1) Rhizosphere microbial network connectivity decreased by 63.3% at 3 drought cycles (R3) versus control (R0), while bulk soil only decreased by 11.6%, showing niche-specific adaptation; (2) fungal communities responded rapidly to short-term drought stress, while bacterial (e.g., Proteobacteria) taxa exhibited delayed yet specific recruitment patterns across successive drought cycles, suggesting a time-resolved functional synergy; (3) transplanting R3 rhizosphere soil increased L. chinensis the content of relative water, proline, chlorophyll and soluble sugar, while reducing the relative conductivity and malondialdehyde content, validating the microbial-mediated 'stress memory' effect. These findings reveal that L. chinensis enhances drought adaptation by targeting the recruitment of rhizosphere microbes, providing valuable insights into the ecological resilience and restoration of grasslands.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial Memory of Drought Reshapes Root-Associated Communities to Enhance Plant Resilience.\",\"authors\":\"Hongyin Qi, Xin Wen, Ziyue Wang, Shuxia Yin\",\"doi\":\"10.1111/pce.70200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Global climate change has increased the frequency and severity of droughts, posing significant threats to grassland ecosystems. As a dominant species in meadow steppe in northern China's grasslands, Leymus chinensis exhibits excellent drought resistance, yet the interaction mechanisms between its drought resistance and rhizosphere microbial communities remain unclear. This study simulated short-term drought cycles (0-3) and combined high-throughput sequencing with microbial transplantation experiments to investigate rhizosphere and bulk soil microbial responses to drought and their regulatory effects on host drought resistance. Key findings include: (1) Rhizosphere microbial network connectivity decreased by 63.3% at 3 drought cycles (R3) versus control (R0), while bulk soil only decreased by 11.6%, showing niche-specific adaptation; (2) fungal communities responded rapidly to short-term drought stress, while bacterial (e.g., Proteobacteria) taxa exhibited delayed yet specific recruitment patterns across successive drought cycles, suggesting a time-resolved functional synergy; (3) transplanting R3 rhizosphere soil increased L. chinensis the content of relative water, proline, chlorophyll and soluble sugar, while reducing the relative conductivity and malondialdehyde content, validating the microbial-mediated 'stress memory' effect. These findings reveal that L. chinensis enhances drought adaptation by targeting the recruitment of rhizosphere microbes, providing valuable insights into the ecological resilience and restoration of grasslands.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.70200\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70200","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Microbial Memory of Drought Reshapes Root-Associated Communities to Enhance Plant Resilience.
Global climate change has increased the frequency and severity of droughts, posing significant threats to grassland ecosystems. As a dominant species in meadow steppe in northern China's grasslands, Leymus chinensis exhibits excellent drought resistance, yet the interaction mechanisms between its drought resistance and rhizosphere microbial communities remain unclear. This study simulated short-term drought cycles (0-3) and combined high-throughput sequencing with microbial transplantation experiments to investigate rhizosphere and bulk soil microbial responses to drought and their regulatory effects on host drought resistance. Key findings include: (1) Rhizosphere microbial network connectivity decreased by 63.3% at 3 drought cycles (R3) versus control (R0), while bulk soil only decreased by 11.6%, showing niche-specific adaptation; (2) fungal communities responded rapidly to short-term drought stress, while bacterial (e.g., Proteobacteria) taxa exhibited delayed yet specific recruitment patterns across successive drought cycles, suggesting a time-resolved functional synergy; (3) transplanting R3 rhizosphere soil increased L. chinensis the content of relative water, proline, chlorophyll and soluble sugar, while reducing the relative conductivity and malondialdehyde content, validating the microbial-mediated 'stress memory' effect. These findings reveal that L. chinensis enhances drought adaptation by targeting the recruitment of rhizosphere microbes, providing valuable insights into the ecological resilience and restoration of grasslands.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.