{"title":"用于开发未来作物的下一代转化基因组学。","authors":"Udita Basu, Swarup K. Parida","doi":"10.1007/s10142-025-01704-z","DOIUrl":null,"url":null,"abstract":"<div><p>Advancements in translational genomics have revolutionized crop breeding, driving us from traditional breeding methods towards next-generation strategies that integrate genomic, transcriptomic, and phenotypic data to expedite crop improvement. There has been a shift from single genomes to pan-genomes, which better capture intraspecific diversity, and from bulk transcriptome analyses to single-cell transcriptomics, enabling cell-specific insights into gene regulation and functional genomics. Both high throughput genopyting and phenotyping approaches are now possible due to rapid technological advancement in the field of translational genomics. Large-scale phenotyping data from multi-environment field trials is now possible due to AI-enabled digital and drone-based scanning. In the era of artificial intelligence and machine learning we have developed flexible models to handle complex genetic architecture of trait regulation using various tools and approaches. These genetic and genomic resources are the foundation for generating novel, adaptable, and high-yielding varieties, accelerating trait discovery and mapping. This review explores the comprehensive landscape of modern translational genomics, highlighting key shifts and innovations that enhance our capacity to address agricultural challenges. Integrative pipelines that unify these next-generation approaches could facilitate faster, more precise, and sustainable crop improvement, ultimately meeting the growing demands for future-ready crops.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Next-generation translational genomics for developing future crops\",\"authors\":\"Udita Basu, Swarup K. Parida\",\"doi\":\"10.1007/s10142-025-01704-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Advancements in translational genomics have revolutionized crop breeding, driving us from traditional breeding methods towards next-generation strategies that integrate genomic, transcriptomic, and phenotypic data to expedite crop improvement. There has been a shift from single genomes to pan-genomes, which better capture intraspecific diversity, and from bulk transcriptome analyses to single-cell transcriptomics, enabling cell-specific insights into gene regulation and functional genomics. Both high throughput genopyting and phenotyping approaches are now possible due to rapid technological advancement in the field of translational genomics. Large-scale phenotyping data from multi-environment field trials is now possible due to AI-enabled digital and drone-based scanning. In the era of artificial intelligence and machine learning we have developed flexible models to handle complex genetic architecture of trait regulation using various tools and approaches. These genetic and genomic resources are the foundation for generating novel, adaptable, and high-yielding varieties, accelerating trait discovery and mapping. This review explores the comprehensive landscape of modern translational genomics, highlighting key shifts and innovations that enhance our capacity to address agricultural challenges. Integrative pipelines that unify these next-generation approaches could facilitate faster, more precise, and sustainable crop improvement, ultimately meeting the growing demands for future-ready crops.</p></div>\",\"PeriodicalId\":574,\"journal\":{\"name\":\"Functional & Integrative Genomics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional & Integrative Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10142-025-01704-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-025-01704-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Next-generation translational genomics for developing future crops
Advancements in translational genomics have revolutionized crop breeding, driving us from traditional breeding methods towards next-generation strategies that integrate genomic, transcriptomic, and phenotypic data to expedite crop improvement. There has been a shift from single genomes to pan-genomes, which better capture intraspecific diversity, and from bulk transcriptome analyses to single-cell transcriptomics, enabling cell-specific insights into gene regulation and functional genomics. Both high throughput genopyting and phenotyping approaches are now possible due to rapid technological advancement in the field of translational genomics. Large-scale phenotyping data from multi-environment field trials is now possible due to AI-enabled digital and drone-based scanning. In the era of artificial intelligence and machine learning we have developed flexible models to handle complex genetic architecture of trait regulation using various tools and approaches. These genetic and genomic resources are the foundation for generating novel, adaptable, and high-yielding varieties, accelerating trait discovery and mapping. This review explores the comprehensive landscape of modern translational genomics, highlighting key shifts and innovations that enhance our capacity to address agricultural challenges. Integrative pipelines that unify these next-generation approaches could facilitate faster, more precise, and sustainable crop improvement, ultimately meeting the growing demands for future-ready crops.
期刊介绍:
Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?