手性纳米团簇自组装的多尺度建模方法。

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Neha Yadav, , , Vikas Tiwari, , , Soumya Mondal, , and , Tarak Karmakar*, 
{"title":"手性纳米团簇自组装的多尺度建模方法。","authors":"Neha Yadav,&nbsp;, ,&nbsp;Vikas Tiwari,&nbsp;, ,&nbsp;Soumya Mondal,&nbsp;, and ,&nbsp;Tarak Karmakar*,&nbsp;","doi":"10.1021/acs.jpclett.5c01929","DOIUrl":null,"url":null,"abstract":"<p >The controlled formation of chiral microstructures from functionalized nanoparticles remains a key challenge in nanoscience. Factors such as ligand charge, counterion type, and pH critically affect nanoparticle self-assembly, yet molecular-level mechanisms remain poorly understood. In this study, we used atomistic and coarse-grained (CG) molecular dynamics (MD) simulations to investigate the self-assembly of [Ag<sub>9</sub>(<i>o</i>-MBA)<sub>9</sub>]<sup>9–</sup> (where <i>o</i>-MBA = <i>ortho</i>-mercaptobenzoic acid) in the presence of calcium ions. Atomistic MD simulations revealed dynamic silver cores and site-specific Ca<sup>2+</sup> binding, which promote the formation of ordered motifs. CG MD simulations enabled us to simulate large multimeric systems with hundreds of nanoclusters over extended time scales. Together, the simulations show that nanoclusters assemble into long linear chains, which subsequently coil into chiral superstructures. These findings provide multiscale, molecular-level insight into how calcium-mediated interactions guide the chiral self-assembly of monolayer-protected metal nanoclusters and establish a computational framework for the rational design of chiral nanomaterials.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 39","pages":"10187–10194"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Modeling Approach to Chiral Nanocluster Self-Assembly\",\"authors\":\"Neha Yadav,&nbsp;, ,&nbsp;Vikas Tiwari,&nbsp;, ,&nbsp;Soumya Mondal,&nbsp;, and ,&nbsp;Tarak Karmakar*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c01929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The controlled formation of chiral microstructures from functionalized nanoparticles remains a key challenge in nanoscience. Factors such as ligand charge, counterion type, and pH critically affect nanoparticle self-assembly, yet molecular-level mechanisms remain poorly understood. In this study, we used atomistic and coarse-grained (CG) molecular dynamics (MD) simulations to investigate the self-assembly of [Ag<sub>9</sub>(<i>o</i>-MBA)<sub>9</sub>]<sup>9–</sup> (where <i>o</i>-MBA = <i>ortho</i>-mercaptobenzoic acid) in the presence of calcium ions. Atomistic MD simulations revealed dynamic silver cores and site-specific Ca<sup>2+</sup> binding, which promote the formation of ordered motifs. CG MD simulations enabled us to simulate large multimeric systems with hundreds of nanoclusters over extended time scales. Together, the simulations show that nanoclusters assemble into long linear chains, which subsequently coil into chiral superstructures. These findings provide multiscale, molecular-level insight into how calcium-mediated interactions guide the chiral self-assembly of monolayer-protected metal nanoclusters and establish a computational framework for the rational design of chiral nanomaterials.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 39\",\"pages\":\"10187–10194\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01929\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01929","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

从功能化纳米颗粒中控制手性微结构的形成仍然是纳米科学的一个关键挑战。配体电荷、反离子类型和pH等因素严重影响纳米粒子的自组装,但分子水平的机制仍然知之甚少。在这项研究中,我们使用原子和粗粒度(CG)分子动力学(MD)模拟来研究[Ag9(o-MBA)9]9-(其中o-MBA =邻巯基苯甲酸)在钙离子存在下的自组装。原子MD模拟揭示了动态银核和位点特异性Ca2+结合,这促进了有序基序的形成。CG MD模拟使我们能够在延长的时间尺度上模拟具有数百纳米团簇的大型多聚体系统。总之,模拟表明纳米团簇组装成长线性链,随后卷曲成手性超结构。这些发现提供了多尺度、分子水平的见解,了解钙介导的相互作用如何指导单层保护金属纳米团簇的手性自组装,并为手性纳米材料的合理设计建立了计算框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiscale Modeling Approach to Chiral Nanocluster Self-Assembly

Multiscale Modeling Approach to Chiral Nanocluster Self-Assembly

Multiscale Modeling Approach to Chiral Nanocluster Self-Assembly

The controlled formation of chiral microstructures from functionalized nanoparticles remains a key challenge in nanoscience. Factors such as ligand charge, counterion type, and pH critically affect nanoparticle self-assembly, yet molecular-level mechanisms remain poorly understood. In this study, we used atomistic and coarse-grained (CG) molecular dynamics (MD) simulations to investigate the self-assembly of [Ag9(o-MBA)9]9– (where o-MBA = ortho-mercaptobenzoic acid) in the presence of calcium ions. Atomistic MD simulations revealed dynamic silver cores and site-specific Ca2+ binding, which promote the formation of ordered motifs. CG MD simulations enabled us to simulate large multimeric systems with hundreds of nanoclusters over extended time scales. Together, the simulations show that nanoclusters assemble into long linear chains, which subsequently coil into chiral superstructures. These findings provide multiscale, molecular-level insight into how calcium-mediated interactions guide the chiral self-assembly of monolayer-protected metal nanoclusters and establish a computational framework for the rational design of chiral nanomaterials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信