海洋环境中增强Cu2+电化学传感的氮掺杂非晶碳膜

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Xueqing Zhao, Silong Zhang, Shuyuan Wang, Peng Guo, Zhenyu Wang, Guanshui Ma, Aiying Wang
{"title":"海洋环境中增强Cu2+电化学传感的氮掺杂非晶碳膜","authors":"Xueqing Zhao,&nbsp;Silong Zhang,&nbsp;Shuyuan Wang,&nbsp;Peng Guo,&nbsp;Zhenyu Wang,&nbsp;Guanshui Ma,&nbsp;Aiying Wang","doi":"10.1002/admi.202500583","DOIUrl":null,"url":null,"abstract":"<p>Amorphous carbon (a-C) is a promising material for electrochemical sensing due to its wide potential window and chemical stability. However, its high resistance and limited surface activity hinder performance. Nitrogen (N) doping can improve conductivity while maintaining a low background current, but precise control of N content remains challenging. In this study, N-doped a-C films are fabricated using a high-ionization anode-layer ion source by adjusting the C<sub>2</sub>H<sub>2</sub>/N<sub>2</sub> gas ratio. The influence of N concentration on Cu<sup>2</sup>⁺ detection performance is systematically evaluated. Moderate N doping (≈12.9 at.%) facilitates the formation of sp<sup>2</sup>-hybridized carbon and nitrogen-containing functional groups, significantly enhancing electrochemical activity. The optimized electrode exhibits a wide linear detection range from 8 × 10<sup>−3</sup> to 5 mM and a low detection limit of 8 × 10<sup>−3</sup> mM in 3.5 wt% NaCl solution, sufficient for monitoring copper alloy crevice corrosion (≈0.1 m<span>m</span>). The electrodes also show excellent repeatability, reproducibility, and long-term stability. Theoretical calculations indicate that increased sp<sup>2</sup> content and C─N bonds enhance Cu<sup>2</sup>⁺ adsorption and electron transfer, thereby improving sensor performance via N doping.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 18","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500583","citationCount":"0","resultStr":"{\"title\":\"Nitrogen-Doped Amorphous Carbon Film for Enhanced Cu2+ Electrochemical Sensing in Marine Environments\",\"authors\":\"Xueqing Zhao,&nbsp;Silong Zhang,&nbsp;Shuyuan Wang,&nbsp;Peng Guo,&nbsp;Zhenyu Wang,&nbsp;Guanshui Ma,&nbsp;Aiying Wang\",\"doi\":\"10.1002/admi.202500583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Amorphous carbon (a-C) is a promising material for electrochemical sensing due to its wide potential window and chemical stability. However, its high resistance and limited surface activity hinder performance. Nitrogen (N) doping can improve conductivity while maintaining a low background current, but precise control of N content remains challenging. In this study, N-doped a-C films are fabricated using a high-ionization anode-layer ion source by adjusting the C<sub>2</sub>H<sub>2</sub>/N<sub>2</sub> gas ratio. The influence of N concentration on Cu<sup>2</sup>⁺ detection performance is systematically evaluated. Moderate N doping (≈12.9 at.%) facilitates the formation of sp<sup>2</sup>-hybridized carbon and nitrogen-containing functional groups, significantly enhancing electrochemical activity. The optimized electrode exhibits a wide linear detection range from 8 × 10<sup>−3</sup> to 5 mM and a low detection limit of 8 × 10<sup>−3</sup> mM in 3.5 wt% NaCl solution, sufficient for monitoring copper alloy crevice corrosion (≈0.1 m<span>m</span>). The electrodes also show excellent repeatability, reproducibility, and long-term stability. Theoretical calculations indicate that increased sp<sup>2</sup> content and C─N bonds enhance Cu<sup>2</sup>⁺ adsorption and electron transfer, thereby improving sensor performance via N doping.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 18\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500583\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202500583\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202500583","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

无定形碳(a- c)具有宽的电位窗和化学稳定性,是一种很有前途的电化学传感材料。然而,它的高电阻和有限的表面活性阻碍了性能。氮(N)掺杂可以在保持低背景电流的同时提高电导率,但精确控制氮含量仍然是一个挑战。在本研究中,通过调节C2H2/N2气体比,采用高电离阳极层离子源制备了n掺杂a- c薄膜。系统地评价了N浓度对Cu2 +检测性能的影响。适量N掺杂(≈12.9 at)。%)促进了sp2杂化碳和含氮官能团的形成,显著提高了电化学活性。在3.5 wt% NaCl溶液中,该电极的线性检测范围为8 × 10−3 ~ 5 mM,检测限低至8 × 10−3 mM,足以监测铜合金缝隙腐蚀(≈0.1 mM)。电极也表现出优异的重复性、再现性和长期稳定性。理论计算表明,增加的sp2含量和C─N键增强了Cu2⁺的吸附和电子转移,从而通过N掺杂提高了传感器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nitrogen-Doped Amorphous Carbon Film for Enhanced Cu2+ Electrochemical Sensing in Marine Environments

Nitrogen-Doped Amorphous Carbon Film for Enhanced Cu2+ Electrochemical Sensing in Marine Environments

Amorphous carbon (a-C) is a promising material for electrochemical sensing due to its wide potential window and chemical stability. However, its high resistance and limited surface activity hinder performance. Nitrogen (N) doping can improve conductivity while maintaining a low background current, but precise control of N content remains challenging. In this study, N-doped a-C films are fabricated using a high-ionization anode-layer ion source by adjusting the C2H2/N2 gas ratio. The influence of N concentration on Cu2⁺ detection performance is systematically evaluated. Moderate N doping (≈12.9 at.%) facilitates the formation of sp2-hybridized carbon and nitrogen-containing functional groups, significantly enhancing electrochemical activity. The optimized electrode exhibits a wide linear detection range from 8 × 10−3 to 5 mM and a low detection limit of 8 × 10−3 mM in 3.5 wt% NaCl solution, sufficient for monitoring copper alloy crevice corrosion (≈0.1 mm). The electrodes also show excellent repeatability, reproducibility, and long-term stability. Theoretical calculations indicate that increased sp2 content and C─N bonds enhance Cu2⁺ adsorption and electron transfer, thereby improving sensor performance via N doping.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信