碲纳米结构的形态演化研究

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
K. K. Nidha Hind, Pinki Rani, Manjima Sudheer, Shashikant P. Patole, Prashant S. Alegaonkar
{"title":"碲纳米结构的形态演化研究","authors":"K. K. Nidha Hind,&nbsp;Pinki Rani,&nbsp;Manjima Sudheer,&nbsp;Shashikant P. Patole,&nbsp;Prashant S. Alegaonkar","doi":"10.1007/s10853-025-11473-6","DOIUrl":null,"url":null,"abstract":"<div><p>Tellurium nanostructures (TeNs) interact exclusively via van der Waals forces and exhibit a quasi-one-dimensional electronic band structure, yielding properties that differ markedly from bulk Tellurium (Te). Here, we report a facile, one-step, room-temperature wet-chemical synthesis of TeNs and systematically examine their morphological evolution. Building on Rani et al.(Appl Phys A Mater Sci Process 10.1007/s00339-022-05405-3) observation that Mo additives induce time-dependent phase transitions in Te nanotubes at 120 °C (and thermodynamic insights by Sudheer et al.(J Phys Chem C Nanomater Interfaces 127 36 18076 18088)), we extended the investigation by varying the reaction temperature (ambient to 135 °C) and reaction time. Using field-emission SEM and high-resolution TEM, we found that at 120 °C Te initially forms nanotubes which convert into nanoflakes after 6 h and then revert in consistent with findings of Rani et al.( Appl Phys A Mater Sci Process 10.1007/s00339-022-05405-3)’s report. At 135 °C, however, the intermediate flake stage is entirely suppressed, and Te nucleates and grows directly as uniform one-dimensional nanorods. FTIR, XRD, and XPS analyses confirm that at 120 °C Mo–O–Te–O and Te–Mo–Te linkages form selectively at 6 h, whereas at 135 °C full reduction proceeds without intermediate bonding rearrangements. EDX shows higher elemental Te content at 135 °C, and thermal conductivity measurements reveal that the nanorods possess enhanced thermal stability. This work thus introduces a novel, solution-based route to stable Te nanorods with improved structural and thermal properties.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 37","pages":"16858 - 16876"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations on morphological evolution in tellurium nanostructures\",\"authors\":\"K. K. Nidha Hind,&nbsp;Pinki Rani,&nbsp;Manjima Sudheer,&nbsp;Shashikant P. Patole,&nbsp;Prashant S. Alegaonkar\",\"doi\":\"10.1007/s10853-025-11473-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tellurium nanostructures (TeNs) interact exclusively via van der Waals forces and exhibit a quasi-one-dimensional electronic band structure, yielding properties that differ markedly from bulk Tellurium (Te). Here, we report a facile, one-step, room-temperature wet-chemical synthesis of TeNs and systematically examine their morphological evolution. Building on Rani et al.(Appl Phys A Mater Sci Process 10.1007/s00339-022-05405-3) observation that Mo additives induce time-dependent phase transitions in Te nanotubes at 120 °C (and thermodynamic insights by Sudheer et al.(J Phys Chem C Nanomater Interfaces 127 36 18076 18088)), we extended the investigation by varying the reaction temperature (ambient to 135 °C) and reaction time. Using field-emission SEM and high-resolution TEM, we found that at 120 °C Te initially forms nanotubes which convert into nanoflakes after 6 h and then revert in consistent with findings of Rani et al.( Appl Phys A Mater Sci Process 10.1007/s00339-022-05405-3)’s report. At 135 °C, however, the intermediate flake stage is entirely suppressed, and Te nucleates and grows directly as uniform one-dimensional nanorods. FTIR, XRD, and XPS analyses confirm that at 120 °C Mo–O–Te–O and Te–Mo–Te linkages form selectively at 6 h, whereas at 135 °C full reduction proceeds without intermediate bonding rearrangements. EDX shows higher elemental Te content at 135 °C, and thermal conductivity measurements reveal that the nanorods possess enhanced thermal stability. This work thus introduces a novel, solution-based route to stable Te nanorods with improved structural and thermal properties.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 37\",\"pages\":\"16858 - 16876\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-11473-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11473-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碲纳米结构(TeNs)完全通过范 der 华力相互作用,并表现出准一维电子带结构,其性能与块状碲(Te)明显不同。在这里,我们报告了一个简单的,一步,室温湿化学合成的TeNs,并系统地研究了它们的形态演变。在Rani等人(Appl Phys A Mater Sci Process 10.1007/s00339-022-05405-3)观察到Mo添加剂在120°C下诱导Te纳米管中随时间变化的相变(以及Sudheer等人(J Phys Chem C Nanomater Interfaces 127 36 18076 18088)的热力学见解)的基础上,我们通过改变反应温度(环境温度至135°C)和反应时间扩展了研究。利用场发射扫描电镜和高分辨率透射电镜,我们发现在120°C时,Te最初形成纳米管,在6小时后转化为纳米片,然后恢复,这与Rani等人(appll Phys A Mater Sci Process 10.1007/s00339-022-05405-3)报告的发现一致。然而,在135℃时,中间薄片阶段完全被抑制,Te直接成核并生长为均匀的一维纳米棒。FTIR, XRD和XPS分析证实,在120°C下,Mo-O-Te-O和Te-Mo-Te键在6小时选择性形成,而在135°C下,完全还原过程没有中间键重排。EDX在135°C时显示出较高的元素Te含量,热导率测量表明纳米棒具有增强的热稳定性。因此,这项工作引入了一种新颖的、基于溶液的途径,以改善结构和热性能来稳定纳米棒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigations on morphological evolution in tellurium nanostructures

Tellurium nanostructures (TeNs) interact exclusively via van der Waals forces and exhibit a quasi-one-dimensional electronic band structure, yielding properties that differ markedly from bulk Tellurium (Te). Here, we report a facile, one-step, room-temperature wet-chemical synthesis of TeNs and systematically examine their morphological evolution. Building on Rani et al.(Appl Phys A Mater Sci Process 10.1007/s00339-022-05405-3) observation that Mo additives induce time-dependent phase transitions in Te nanotubes at 120 °C (and thermodynamic insights by Sudheer et al.(J Phys Chem C Nanomater Interfaces 127 36 18076 18088)), we extended the investigation by varying the reaction temperature (ambient to 135 °C) and reaction time. Using field-emission SEM and high-resolution TEM, we found that at 120 °C Te initially forms nanotubes which convert into nanoflakes after 6 h and then revert in consistent with findings of Rani et al.( Appl Phys A Mater Sci Process 10.1007/s00339-022-05405-3)’s report. At 135 °C, however, the intermediate flake stage is entirely suppressed, and Te nucleates and grows directly as uniform one-dimensional nanorods. FTIR, XRD, and XPS analyses confirm that at 120 °C Mo–O–Te–O and Te–Mo–Te linkages form selectively at 6 h, whereas at 135 °C full reduction proceeds without intermediate bonding rearrangements. EDX shows higher elemental Te content at 135 °C, and thermal conductivity measurements reveal that the nanorods possess enhanced thermal stability. This work thus introduces a novel, solution-based route to stable Te nanorods with improved structural and thermal properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信