基于深度学习的电沉积Co-Ni合金薄膜磁性能预测

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hasan Güler, Rasim Özdemir, Adem Coşkun
{"title":"基于深度学习的电沉积Co-Ni合金薄膜磁性能预测","authors":"Hasan Güler,&nbsp;Rasim Özdemir,&nbsp;Adem Coşkun","doi":"10.1007/s10853-025-11544-8","DOIUrl":null,"url":null,"abstract":"<div><p>Optimizing the magnetic properties of Co–Ni alloy thin films requires understanding complex composition–structure–property relationships that conventional analysis methods cannot adequately capture due to nonlinear interdependencies among synthesis parameters, microstructure, and magnetic behavior. This study introduces the first comprehensive application of triangulated interpretability methods—combining SHAP, perturbation, and Sobol sensitivity analyses—to quantitatively decode the magnetic behavior of electrodeposited Co–Ni thin films, providing unprecedented insights for targeted materials design. Through systematic electrodeposition of four Co–Ni compositions (52–75 wt% Co) and comprehensive characterization using XRD, SEM, and VSM, we generated a dataset of 1322 field-dependent magnetic moment measurements. Our custom deep neural network achieved exceptional predictive accuracy (R<sup>2</sup> = 0.973) and, through triangulated interpretability analysis, revealed that applied magnetic field dominates magnetic response (SHAP value = 0.695), followed by cobalt content (0.291) and nickel content (0.384). The integrated framework identified optimal compositions for specific applications: ~ 70 wt% Co with 350–380 nm grain sizes for high-saturation magnetization (Ms ≈ 120 emu/g) in EMI shielding and &lt; 60 wt% Co for low coercivity sensor applications. This triangulated interpretability approach provides robust, quantitative guidance for accelerating magnetic materials development, demonstrating how advanced machine learning can transform empirical materials optimization into predictive, knowledge-driven design.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 37","pages":"17001 - 17024"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based prediction of magnetic properties in electrodeposited Co–Ni alloy thin films\",\"authors\":\"Hasan Güler,&nbsp;Rasim Özdemir,&nbsp;Adem Coşkun\",\"doi\":\"10.1007/s10853-025-11544-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optimizing the magnetic properties of Co–Ni alloy thin films requires understanding complex composition–structure–property relationships that conventional analysis methods cannot adequately capture due to nonlinear interdependencies among synthesis parameters, microstructure, and magnetic behavior. This study introduces the first comprehensive application of triangulated interpretability methods—combining SHAP, perturbation, and Sobol sensitivity analyses—to quantitatively decode the magnetic behavior of electrodeposited Co–Ni thin films, providing unprecedented insights for targeted materials design. Through systematic electrodeposition of four Co–Ni compositions (52–75 wt% Co) and comprehensive characterization using XRD, SEM, and VSM, we generated a dataset of 1322 field-dependent magnetic moment measurements. Our custom deep neural network achieved exceptional predictive accuracy (R<sup>2</sup> = 0.973) and, through triangulated interpretability analysis, revealed that applied magnetic field dominates magnetic response (SHAP value = 0.695), followed by cobalt content (0.291) and nickel content (0.384). The integrated framework identified optimal compositions for specific applications: ~ 70 wt% Co with 350–380 nm grain sizes for high-saturation magnetization (Ms ≈ 120 emu/g) in EMI shielding and &lt; 60 wt% Co for low coercivity sensor applications. This triangulated interpretability approach provides robust, quantitative guidance for accelerating magnetic materials development, demonstrating how advanced machine learning can transform empirical materials optimization into predictive, knowledge-driven design.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 37\",\"pages\":\"17001 - 17024\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-11544-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11544-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

优化Co-Ni合金薄膜的磁性需要理解复杂的成分-结构-性能关系,由于合成参数、微观结构和磁性行为之间的非线性相互依赖,传统的分析方法无法充分捕捉到这些关系。本研究首次引入了三角可解释性方法的综合应用——结合SHAP、摄动和Sobol灵敏度分析——定量地解码电沉积Co-Ni薄膜的磁性行为,为目标材料设计提供了前所未有的见解。通过系统电沉积四种Co - ni成分(52-75 wt% Co)并使用XRD, SEM和VSM进行综合表征,我们生成了1322个磁场相关磁矩测量数据集。我们定制的深度神经网络具有出色的预测精度(R2 = 0.973),并且通过三角可解释性分析显示,应用磁场主导磁响应(SHAP值= 0.695),其次是钴含量(0.291)和镍含量(0.384)。集成框架确定了特定应用的最佳组合物:~ 70 wt% Co, 350-380 nm晶粒尺寸用于EMI屏蔽中的高饱和磁化(Ms≈120 emu/g), <; 60 wt% Co用于低矫顽力传感器应用。这种三角可解释性方法为加速磁性材料的开发提供了强大的定量指导,展示了先进的机器学习如何将经验材料优化转化为预测的、知识驱动的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep learning-based prediction of magnetic properties in electrodeposited Co–Ni alloy thin films

Deep learning-based prediction of magnetic properties in electrodeposited Co–Ni alloy thin films

Optimizing the magnetic properties of Co–Ni alloy thin films requires understanding complex composition–structure–property relationships that conventional analysis methods cannot adequately capture due to nonlinear interdependencies among synthesis parameters, microstructure, and magnetic behavior. This study introduces the first comprehensive application of triangulated interpretability methods—combining SHAP, perturbation, and Sobol sensitivity analyses—to quantitatively decode the magnetic behavior of electrodeposited Co–Ni thin films, providing unprecedented insights for targeted materials design. Through systematic electrodeposition of four Co–Ni compositions (52–75 wt% Co) and comprehensive characterization using XRD, SEM, and VSM, we generated a dataset of 1322 field-dependent magnetic moment measurements. Our custom deep neural network achieved exceptional predictive accuracy (R2 = 0.973) and, through triangulated interpretability analysis, revealed that applied magnetic field dominates magnetic response (SHAP value = 0.695), followed by cobalt content (0.291) and nickel content (0.384). The integrated framework identified optimal compositions for specific applications: ~ 70 wt% Co with 350–380 nm grain sizes for high-saturation magnetization (Ms ≈ 120 emu/g) in EMI shielding and < 60 wt% Co for low coercivity sensor applications. This triangulated interpretability approach provides robust, quantitative guidance for accelerating magnetic materials development, demonstrating how advanced machine learning can transform empirical materials optimization into predictive, knowledge-driven design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信