革命性的铁路系统:数字孪生技术的系统回顾

Emmanuel Anu Thompson , Pan Lu , Philip Kofi Alimo , Herman Benjamin Atuobi , Evans Tetteh Akoto , Cephas Kenneth Abbew
{"title":"革命性的铁路系统:数字孪生技术的系统回顾","authors":"Emmanuel Anu Thompson ,&nbsp;Pan Lu ,&nbsp;Philip Kofi Alimo ,&nbsp;Herman Benjamin Atuobi ,&nbsp;Evans Tetteh Akoto ,&nbsp;Cephas Kenneth Abbew","doi":"10.1016/j.hspr.2025.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>Digital Twin (DT) technology is revolutionizing the railway sector by providing a virtual replica of physical systems, enabling real-time monitoring, predictive maintenance, and enhanced decision-making. This systematic literature review examines the status, enabling technologies, case studies, and frameworks for DT applications in railway systems with 91 selected papers from Scopus, Web of Science, IEEE, and the Snowballing Technique. The review focuses on four primary subsystems: tracks, civil structures, vehicles, and overhead contact line structures. Key findings reveal that DT has successfully optimized maintenance strategies, improved operational efficiency, and enhanced system safety. Internet of Things (IoT) devices, Artificial Intelligence (AI), machine learning, and cloud computing are critical in implementing DT models. However, challenges like data integration, high implementation costs, and cybersecurity risks remain, necessitating the discussed implications. Future research should focus on improving data interoperability, reducing costs through scalable cloud-based solutions, and addressing cybersecurity vulnerabilities. DT technology has the potential to revolutionize railway infrastructure management, ensuring greater efficiency, safety, and sustainability.</div></div>","PeriodicalId":100607,"journal":{"name":"High-speed Railway","volume":"3 3","pages":"Pages 238-250"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing railway systems: A systematic review of digital twin technologies\",\"authors\":\"Emmanuel Anu Thompson ,&nbsp;Pan Lu ,&nbsp;Philip Kofi Alimo ,&nbsp;Herman Benjamin Atuobi ,&nbsp;Evans Tetteh Akoto ,&nbsp;Cephas Kenneth Abbew\",\"doi\":\"10.1016/j.hspr.2025.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Digital Twin (DT) technology is revolutionizing the railway sector by providing a virtual replica of physical systems, enabling real-time monitoring, predictive maintenance, and enhanced decision-making. This systematic literature review examines the status, enabling technologies, case studies, and frameworks for DT applications in railway systems with 91 selected papers from Scopus, Web of Science, IEEE, and the Snowballing Technique. The review focuses on four primary subsystems: tracks, civil structures, vehicles, and overhead contact line structures. Key findings reveal that DT has successfully optimized maintenance strategies, improved operational efficiency, and enhanced system safety. Internet of Things (IoT) devices, Artificial Intelligence (AI), machine learning, and cloud computing are critical in implementing DT models. However, challenges like data integration, high implementation costs, and cybersecurity risks remain, necessitating the discussed implications. Future research should focus on improving data interoperability, reducing costs through scalable cloud-based solutions, and addressing cybersecurity vulnerabilities. DT technology has the potential to revolutionize railway infrastructure management, ensuring greater efficiency, safety, and sustainability.</div></div>\",\"PeriodicalId\":100607,\"journal\":{\"name\":\"High-speed Railway\",\"volume\":\"3 3\",\"pages\":\"Pages 238-250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-speed Railway\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949867825000273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-speed Railway","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949867825000273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字孪生(DT)技术通过提供物理系统的虚拟副本,实现实时监控、预测性维护和增强决策,正在彻底改变铁路部门。这篇系统的文献综述从Scopus、Web of Science、IEEE和滚雪球技术中挑选了91篇论文,研究了铁路系统中DT应用的现状、使能技术、案例研究和框架。审查侧重于四个主要子系统:轨道、土木结构、车辆和架空接触线结构。主要研究结果表明,DT已经成功地优化了维护策略,提高了操作效率,增强了系统安全性。物联网(IoT)设备、人工智能(AI)、机器学习和云计算对于实现DT模型至关重要。然而,数据集成、高实施成本和网络安全风险等挑战仍然存在,因此有必要讨论这些影响。未来的研究应侧重于提高数据互操作性,通过可扩展的基于云的解决方案降低成本,并解决网络安全漏洞。DT技术有可能彻底改变铁路基础设施管理,确保更高的效率、安全性和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revolutionizing railway systems: A systematic review of digital twin technologies
Digital Twin (DT) technology is revolutionizing the railway sector by providing a virtual replica of physical systems, enabling real-time monitoring, predictive maintenance, and enhanced decision-making. This systematic literature review examines the status, enabling technologies, case studies, and frameworks for DT applications in railway systems with 91 selected papers from Scopus, Web of Science, IEEE, and the Snowballing Technique. The review focuses on four primary subsystems: tracks, civil structures, vehicles, and overhead contact line structures. Key findings reveal that DT has successfully optimized maintenance strategies, improved operational efficiency, and enhanced system safety. Internet of Things (IoT) devices, Artificial Intelligence (AI), machine learning, and cloud computing are critical in implementing DT models. However, challenges like data integration, high implementation costs, and cybersecurity risks remain, necessitating the discussed implications. Future research should focus on improving data interoperability, reducing costs through scalable cloud-based solutions, and addressing cybersecurity vulnerabilities. DT technology has the potential to revolutionize railway infrastructure management, ensuring greater efficiency, safety, and sustainability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信