二氧化碳加氢制轻烯烃催化剂载体的合理设计:结构、电子和稳定策略

IF 5.3 3区 工程技术 Q2 ENERGY & FUELS
Yanyan Zhang, , , Ye Ma, , , Ying Cao, , , Jian Gao*, , and , Chunshan Song*, 
{"title":"二氧化碳加氢制轻烯烃催化剂载体的合理设计:结构、电子和稳定策略","authors":"Yanyan Zhang,&nbsp;, ,&nbsp;Ye Ma,&nbsp;, ,&nbsp;Ying Cao,&nbsp;, ,&nbsp;Jian Gao*,&nbsp;, and ,&nbsp;Chunshan Song*,&nbsp;","doi":"10.1021/acs.energyfuels.5c03591","DOIUrl":null,"url":null,"abstract":"<p >The rational design of catalyst supports represents a critical strategy for enhancing the hydrogenation of CO<sub>2</sub> into Light Olefins (C<sub>2</sub>–C<sub>4</sub>), significantly impacting key performance indicators such as activity, selectivity, and stability. This review comprehensively examines three foundational mechanisms through which support materials influence catalytic outcomes: (1) structural modulation: hierarchically porous architectures with high specific surface areas improve active-phase dispersion and facilitate mass transport, thereby optimizing reaction kinetics. (2) electronic engineering: metal–support interactions (MSIs) enhance CO<sub>2</sub> chemisorption, promoting C–C coupling kinetics and favoring selective olefin formation. (3) stabilization strategies: oxide matrices (e.g., ZrO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>) effectively suppress metal sintering, while carbonaceous supports minimize coking via ordered mesoporosity. Moreover, hydrophobic surfaces accelerate H<sub>2</sub>O desorption, reducing aqueous-phase oxidation. Additionally, acid–based properties regulate reaction pathways: Lewis acid-dominated surfaces encourage chain growth, whereas moderate basicity facilitates CO<sub>2</sub> activation. These structure–activity relationships establish a robust foundation for designing advanced catalysts for CO<sub>2</sub>-to-olefin conversion with atomic-level precision.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 38","pages":"18350–18375"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Design of Catalyst Supports for CO2 Hydrogenation to Light Olefins: Structural, Electronic, and Stabilization Strategies\",\"authors\":\"Yanyan Zhang,&nbsp;, ,&nbsp;Ye Ma,&nbsp;, ,&nbsp;Ying Cao,&nbsp;, ,&nbsp;Jian Gao*,&nbsp;, and ,&nbsp;Chunshan Song*,&nbsp;\",\"doi\":\"10.1021/acs.energyfuels.5c03591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The rational design of catalyst supports represents a critical strategy for enhancing the hydrogenation of CO<sub>2</sub> into Light Olefins (C<sub>2</sub>–C<sub>4</sub>), significantly impacting key performance indicators such as activity, selectivity, and stability. This review comprehensively examines three foundational mechanisms through which support materials influence catalytic outcomes: (1) structural modulation: hierarchically porous architectures with high specific surface areas improve active-phase dispersion and facilitate mass transport, thereby optimizing reaction kinetics. (2) electronic engineering: metal–support interactions (MSIs) enhance CO<sub>2</sub> chemisorption, promoting C–C coupling kinetics and favoring selective olefin formation. (3) stabilization strategies: oxide matrices (e.g., ZrO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>) effectively suppress metal sintering, while carbonaceous supports minimize coking via ordered mesoporosity. Moreover, hydrophobic surfaces accelerate H<sub>2</sub>O desorption, reducing aqueous-phase oxidation. Additionally, acid–based properties regulate reaction pathways: Lewis acid-dominated surfaces encourage chain growth, whereas moderate basicity facilitates CO<sub>2</sub> activation. These structure–activity relationships establish a robust foundation for designing advanced catalysts for CO<sub>2</sub>-to-olefin conversion with atomic-level precision.</p>\",\"PeriodicalId\":35,\"journal\":{\"name\":\"Energy & Fuels\",\"volume\":\"39 38\",\"pages\":\"18350–18375\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Fuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c03591\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c03591","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

催化剂载体的合理设计是促进CO2加氢成轻烯烃(C2-C4)的关键策略,对活性、选择性和稳定性等关键性能指标有重要影响。这篇综述全面研究了支撑材料影响催化结果的三个基本机制:(1)结构调节:具有高比表面积的分层多孔结构改善了活性相分散,促进了质量传输,从而优化了反应动力学。(2)电子工程:金属-载体相互作用(msi)增强CO2的化学吸附,促进C-C耦合动力学,有利于选择性烯烃的形成。(3)稳定策略:氧化物基体(如ZrO2、Al2O3)有效抑制金属烧结,而碳质载体通过有序介孔使结焦最小化。此外,疏水表面加速H2O解吸,减少水相氧化。此外,酸基性质调节反应途径:Lewis酸主导的表面促进链生长,而适度的碱度有利于CO2活化。这些结构-活性关系为设计具有原子级精度的co2 -烯烃转化先进催化剂奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rational Design of Catalyst Supports for CO2 Hydrogenation to Light Olefins: Structural, Electronic, and Stabilization Strategies

Rational Design of Catalyst Supports for CO2 Hydrogenation to Light Olefins: Structural, Electronic, and Stabilization Strategies

The rational design of catalyst supports represents a critical strategy for enhancing the hydrogenation of CO2 into Light Olefins (C2–C4), significantly impacting key performance indicators such as activity, selectivity, and stability. This review comprehensively examines three foundational mechanisms through which support materials influence catalytic outcomes: (1) structural modulation: hierarchically porous architectures with high specific surface areas improve active-phase dispersion and facilitate mass transport, thereby optimizing reaction kinetics. (2) electronic engineering: metal–support interactions (MSIs) enhance CO2 chemisorption, promoting C–C coupling kinetics and favoring selective olefin formation. (3) stabilization strategies: oxide matrices (e.g., ZrO2, Al2O3) effectively suppress metal sintering, while carbonaceous supports minimize coking via ordered mesoporosity. Moreover, hydrophobic surfaces accelerate H2O desorption, reducing aqueous-phase oxidation. Additionally, acid–based properties regulate reaction pathways: Lewis acid-dominated surfaces encourage chain growth, whereas moderate basicity facilitates CO2 activation. These structure–activity relationships establish a robust foundation for designing advanced catalysts for CO2-to-olefin conversion with atomic-level precision.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信