具有光学各向异性的小纳米二硫化钼纳米带在绝缘纳米管中的受限生长

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Takumi Tanaka, , , Yuta Sato, , , Motoki Aizaki, , , Shinpei Furusawa, , , Ryosuke Senga, , , Kazu Suenaga, , , Takahiko Endo, , , Yasumitsu Miyata, , and , Yusuke Nakanishi*, 
{"title":"具有光学各向异性的小纳米二硫化钼纳米带在绝缘纳米管中的受限生长","authors":"Takumi Tanaka,&nbsp;, ,&nbsp;Yuta Sato,&nbsp;, ,&nbsp;Motoki Aizaki,&nbsp;, ,&nbsp;Shinpei Furusawa,&nbsp;, ,&nbsp;Ryosuke Senga,&nbsp;, ,&nbsp;Kazu Suenaga,&nbsp;, ,&nbsp;Takahiko Endo,&nbsp;, ,&nbsp;Yasumitsu Miyata,&nbsp;, and ,&nbsp;Yusuke Nakanishi*,&nbsp;","doi":"10.1021/acs.nanolett.5c03638","DOIUrl":null,"url":null,"abstract":"<p >One-dimensional (1D) nanoribbons of transition metal dichalcogenides (TMDs) are predicted to exhibit exotic quantum phenomena that make them attractive for use in nanoscale electronic and spintronic devices. However, exploring the potential of ultranarrow TMD nanoribbons remains a challenge due to the lack of a suitable platform. Here, we report the atomically precise growth of ultranarrow MoS<sub>2</sub> nanoribbons within boron nitride nanotubes (BNNTs). The insulating nature of BNNTs enables direct optical probing of the encapsulated species without perturbing their intrinsic properties. Atomic-resolution transmission electron microscopy reveals the preferential growth of bilayers along the zigzag direction. Raman spectra confirm that the encapsulated structures experience significant strain. Angle-resolved polarized Raman spectroscopy reveals strong optical anisotropy in the 1D geometry, markedly distinct from that of the isotropic 2D MoS<sub>2</sub> sheets. Our approach offers an ideal platform for exploring intrinsic optical properties and device applications in ultranarrow TMD nanoribbons.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 40","pages":"14645–14652"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confined Growth of Few-Nanometer MoS2 Nanoribbons with Optical Anisotropy in Insulating Nanotubes\",\"authors\":\"Takumi Tanaka,&nbsp;, ,&nbsp;Yuta Sato,&nbsp;, ,&nbsp;Motoki Aizaki,&nbsp;, ,&nbsp;Shinpei Furusawa,&nbsp;, ,&nbsp;Ryosuke Senga,&nbsp;, ,&nbsp;Kazu Suenaga,&nbsp;, ,&nbsp;Takahiko Endo,&nbsp;, ,&nbsp;Yasumitsu Miyata,&nbsp;, and ,&nbsp;Yusuke Nakanishi*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c03638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >One-dimensional (1D) nanoribbons of transition metal dichalcogenides (TMDs) are predicted to exhibit exotic quantum phenomena that make them attractive for use in nanoscale electronic and spintronic devices. However, exploring the potential of ultranarrow TMD nanoribbons remains a challenge due to the lack of a suitable platform. Here, we report the atomically precise growth of ultranarrow MoS<sub>2</sub> nanoribbons within boron nitride nanotubes (BNNTs). The insulating nature of BNNTs enables direct optical probing of the encapsulated species without perturbing their intrinsic properties. Atomic-resolution transmission electron microscopy reveals the preferential growth of bilayers along the zigzag direction. Raman spectra confirm that the encapsulated structures experience significant strain. Angle-resolved polarized Raman spectroscopy reveals strong optical anisotropy in the 1D geometry, markedly distinct from that of the isotropic 2D MoS<sub>2</sub> sheets. Our approach offers an ideal platform for exploring intrinsic optical properties and device applications in ultranarrow TMD nanoribbons.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 40\",\"pages\":\"14645–14652\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03638\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03638","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

预计过渡金属二硫族化合物(TMDs)的一维(1D)纳米带将表现出奇异的量子现象,使其在纳米级电子和自旋电子器件中具有吸引力。然而,由于缺乏合适的平台,探索超窄TMD纳米带的潜力仍然是一个挑战。在这里,我们报道了在氮化硼纳米管(bnnt)中原子精确生长超窄MoS2纳米带。bnnt的绝缘特性使其能够在不干扰其固有特性的情况下直接进行光学探测。原子分辨透射电子显微镜显示双分子层沿之字形方向优先生长。拉曼光谱证实,封装结构经历了显著的应变。角分辨偏振拉曼光谱显示,在一维几何结构中具有很强的光学各向异性,与各向同性的二维MoS2片明显不同。我们的方法为探索超超TMD纳米带的内在光学特性和器件应用提供了理想的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Confined Growth of Few-Nanometer MoS2 Nanoribbons with Optical Anisotropy in Insulating Nanotubes

Confined Growth of Few-Nanometer MoS2 Nanoribbons with Optical Anisotropy in Insulating Nanotubes

Confined Growth of Few-Nanometer MoS2 Nanoribbons with Optical Anisotropy in Insulating Nanotubes

One-dimensional (1D) nanoribbons of transition metal dichalcogenides (TMDs) are predicted to exhibit exotic quantum phenomena that make them attractive for use in nanoscale electronic and spintronic devices. However, exploring the potential of ultranarrow TMD nanoribbons remains a challenge due to the lack of a suitable platform. Here, we report the atomically precise growth of ultranarrow MoS2 nanoribbons within boron nitride nanotubes (BNNTs). The insulating nature of BNNTs enables direct optical probing of the encapsulated species without perturbing their intrinsic properties. Atomic-resolution transmission electron microscopy reveals the preferential growth of bilayers along the zigzag direction. Raman spectra confirm that the encapsulated structures experience significant strain. Angle-resolved polarized Raman spectroscopy reveals strong optical anisotropy in the 1D geometry, markedly distinct from that of the isotropic 2D MoS2 sheets. Our approach offers an ideal platform for exploring intrinsic optical properties and device applications in ultranarrow TMD nanoribbons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信