二维双开关铁电交替磁体:改变电子和磁振子

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ShuaiYu Wang, , , Wei-Wei Wang, , , Jiaxuan Fan, , , Xiaodong Zhou, , , Xiao-Ping Li*, , and , Lei Wang*, 
{"title":"二维双开关铁电交替磁体:改变电子和磁振子","authors":"ShuaiYu Wang,&nbsp;, ,&nbsp;Wei-Wei Wang,&nbsp;, ,&nbsp;Jiaxuan Fan,&nbsp;, ,&nbsp;Xiaodong Zhou,&nbsp;, ,&nbsp;Xiao-Ping Li*,&nbsp;, and ,&nbsp;Lei Wang*,&nbsp;","doi":"10.1021/acs.nanolett.5c03483","DOIUrl":null,"url":null,"abstract":"<p >We predict a new class of two-dimensional (2D) materials, termed dual-switchable ferroelectric altermagnets (FEAMs), where reversing the ferroelectric polarization simultaneously alters both electronic spin splitting and magnonic chirality splitting. This provides a pathway for the unified electrical manipulation of both ground-state electron spin textures and collective magnon excitations within a single monolayer, a largely unexplored area. Employing symmetry analysis and first-principles calculations on five candidates identified via database screening (exemplified by CrPS<sub>3</sub> and V<sub>2</sub>I<sub>2</sub>O<sub>2</sub>BrCl), we elucidate the mechanism in FEAMs. Ferroelectricity driven by specific atomic displacements breaks inversion symmetry while preserving key spin group symmetries (e.g., [C<sub>2</sub>||M]). This dual switch could be experimentally observed through a magneto-optical Kerr effect sign change. This work establishes a material-specific pathway toward integrating electrical control over coupled electronic and magnonic properties in two dimensions, paving the way for novel multifunctional spintronic and magnonic applications.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 40","pages":"14618–14624"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional Dual-Switchable Ferroelectric Altermagnets: Altering Electrons and Magnons\",\"authors\":\"ShuaiYu Wang,&nbsp;, ,&nbsp;Wei-Wei Wang,&nbsp;, ,&nbsp;Jiaxuan Fan,&nbsp;, ,&nbsp;Xiaodong Zhou,&nbsp;, ,&nbsp;Xiao-Ping Li*,&nbsp;, and ,&nbsp;Lei Wang*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c03483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We predict a new class of two-dimensional (2D) materials, termed dual-switchable ferroelectric altermagnets (FEAMs), where reversing the ferroelectric polarization simultaneously alters both electronic spin splitting and magnonic chirality splitting. This provides a pathway for the unified electrical manipulation of both ground-state electron spin textures and collective magnon excitations within a single monolayer, a largely unexplored area. Employing symmetry analysis and first-principles calculations on five candidates identified via database screening (exemplified by CrPS<sub>3</sub> and V<sub>2</sub>I<sub>2</sub>O<sub>2</sub>BrCl), we elucidate the mechanism in FEAMs. Ferroelectricity driven by specific atomic displacements breaks inversion symmetry while preserving key spin group symmetries (e.g., [C<sub>2</sub>||M]). This dual switch could be experimentally observed through a magneto-optical Kerr effect sign change. This work establishes a material-specific pathway toward integrating electrical control over coupled electronic and magnonic properties in two dimensions, paving the way for novel multifunctional spintronic and magnonic applications.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 40\",\"pages\":\"14618–14624\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03483\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03483","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们预测了一类新的二维(2D)材料,称为双可切换铁电交替磁体(FEAMs),其中铁电极化逆转同时改变电子自旋分裂和磁手性分裂。这为基态电子自旋织构和单个单层内的集体磁振子激发的统一电操作提供了一条途径,这是一个很大程度上未被探索的领域。通过对称分析和第一性原理计算,对通过数据库筛选确定的5个候选物质(以CrPS3和V2I2O2BrCl为例)进行了分析,阐明了FEAMs中的机制。由特定原子位移驱动的铁电性在保持关键自旋群对称性的同时打破了反演对称性(例如,[C2||M])。这种双开关可以通过磁光克尔效应符号变化在实验中观察到。这项工作建立了一种特定于材料的途径,可以在二维上集成耦合电子和磁特性的电气控制,为新型多功能自旋电子和磁应用铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Two-Dimensional Dual-Switchable Ferroelectric Altermagnets: Altering Electrons and Magnons

Two-Dimensional Dual-Switchable Ferroelectric Altermagnets: Altering Electrons and Magnons

Two-Dimensional Dual-Switchable Ferroelectric Altermagnets: Altering Electrons and Magnons

We predict a new class of two-dimensional (2D) materials, termed dual-switchable ferroelectric altermagnets (FEAMs), where reversing the ferroelectric polarization simultaneously alters both electronic spin splitting and magnonic chirality splitting. This provides a pathway for the unified electrical manipulation of both ground-state electron spin textures and collective magnon excitations within a single monolayer, a largely unexplored area. Employing symmetry analysis and first-principles calculations on five candidates identified via database screening (exemplified by CrPS3 and V2I2O2BrCl), we elucidate the mechanism in FEAMs. Ferroelectricity driven by specific atomic displacements breaks inversion symmetry while preserving key spin group symmetries (e.g., [C2||M]). This dual switch could be experimentally observed through a magneto-optical Kerr effect sign change. This work establishes a material-specific pathway toward integrating electrical control over coupled electronic and magnonic properties in two dimensions, paving the way for novel multifunctional spintronic and magnonic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信