聚合物层间厚度对电化学-机械耦合固态电池性能的影响

IF 5.6 3区 材料科学 Q1 ELECTROCHEMISTRY
Pranaya Keshari Nahak, Venkatasailanathan Ramadesigan
{"title":"聚合物层间厚度对电化学-机械耦合固态电池性能的影响","authors":"Pranaya Keshari Nahak, Venkatasailanathan Ramadesigan","doi":"10.1016/j.electacta.2025.147434","DOIUrl":null,"url":null,"abstract":"Solid-state batteries provide higher capacity and wider electrochemical and thermal stability when used with lithium metal anode than conventional batteries. In solid-state batteries (SSBs), solid inorganic electrolytes such as Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) offer superior ionic conductivity and safety. As the inorganic solid electrolytes (ISEs) are brittle, creating thin layers and interfaces poses mechanical problems. Also, there is a chance of lithium dendrite formation in solid inorganic electrolytes even at low currents due to the rough and rigid contact surface of inorganic electrolytes. Such problems can be alleviated by introducing a polymer interlayer between the lithium metal anode and the ISE. However, there is a difference in the Li-ion conductivity in polymer and inorganic electrolytes. Besides, the volume expansion due to ion transport is comparatively greater in polymers than in ISE. Hence, in this study, the electrochemical performance of the battery is coupled with the mechanical properties of electrode and electrolyte materials to study the effects of introducing polymer interlayer. It is observed that charge transfer overpotential increases more rapidly with time for thinner interlayer thickness cells when operated under galvanostatic conditions. When the polymer interlayer is reduced, the rate of through-plane stress generation becomes more rapid. Besides, the effect of plating, elastic, and plastic deformation on the dimension change of lithium metal anode is also studied. It is found that the dimensional change of the metal anode is more for higher current density and higher interlayer thickness. Moreover, it is obtained that 5 <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3BC;&lt;/mi&gt;&lt;mi is=\"true\"&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.855ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -498.8 1482 798.9\" width=\"3.442ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3BC\"></use></g><g is=\"true\" transform=\"translate(603,0)\"><use xlink:href=\"#MJMATHI-6D\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">μ</mi><mi is=\"true\">m</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">μ</mi><mi is=\"true\">m</mi></mrow></math></script></span> to 7.5 <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3BC;&lt;/mi&gt;&lt;mi is=\"true\"&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.855ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -498.8 1482 798.9\" width=\"3.442ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3BC\"></use></g><g is=\"true\" transform=\"translate(603,0)\"><use xlink:href=\"#MJMATHI-6D\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">μ</mi><mi is=\"true\">m</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">μ</mi><mi is=\"true\">m</mi></mrow></math></script></span> is the most suitable polymer interlayer thickness considering minimal overpotential loss. Thus, the present model provides insight into making a suitable electrolyte for next-gen SSBs while combining the good contact properties of the polymer and the higher shear modulus of solid inorganics.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"2 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Polymer Interlayer Thickness on Solid-State Battery Performance with Electrochemo-Mechanical Coupling\",\"authors\":\"Pranaya Keshari Nahak, Venkatasailanathan Ramadesigan\",\"doi\":\"10.1016/j.electacta.2025.147434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid-state batteries provide higher capacity and wider electrochemical and thermal stability when used with lithium metal anode than conventional batteries. In solid-state batteries (SSBs), solid inorganic electrolytes such as Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) offer superior ionic conductivity and safety. As the inorganic solid electrolytes (ISEs) are brittle, creating thin layers and interfaces poses mechanical problems. Also, there is a chance of lithium dendrite formation in solid inorganic electrolytes even at low currents due to the rough and rigid contact surface of inorganic electrolytes. Such problems can be alleviated by introducing a polymer interlayer between the lithium metal anode and the ISE. However, there is a difference in the Li-ion conductivity in polymer and inorganic electrolytes. Besides, the volume expansion due to ion transport is comparatively greater in polymers than in ISE. Hence, in this study, the electrochemical performance of the battery is coupled with the mechanical properties of electrode and electrolyte materials to study the effects of introducing polymer interlayer. It is observed that charge transfer overpotential increases more rapidly with time for thinner interlayer thickness cells when operated under galvanostatic conditions. When the polymer interlayer is reduced, the rate of through-plane stress generation becomes more rapid. Besides, the effect of plating, elastic, and plastic deformation on the dimension change of lithium metal anode is also studied. It is found that the dimensional change of the metal anode is more for higher current density and higher interlayer thickness. Moreover, it is obtained that 5 <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;&amp;#x3BC;&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.855ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.697ex;\\\" viewbox=\\\"0 -498.8 1482 798.9\\\" width=\\\"3.442ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-3BC\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(603,0)\\\"><use xlink:href=\\\"#MJMATHI-6D\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">μ</mi><mi is=\\\"true\\\">m</mi></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">μ</mi><mi is=\\\"true\\\">m</mi></mrow></math></script></span> to 7.5 <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;&amp;#x3BC;&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.855ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.697ex;\\\" viewbox=\\\"0 -498.8 1482 798.9\\\" width=\\\"3.442ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-3BC\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(603,0)\\\"><use xlink:href=\\\"#MJMATHI-6D\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">μ</mi><mi is=\\\"true\\\">m</mi></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">μ</mi><mi is=\\\"true\\\">m</mi></mrow></math></script></span> is the most suitable polymer interlayer thickness considering minimal overpotential loss. Thus, the present model provides insight into making a suitable electrolyte for next-gen SSBs while combining the good contact properties of the polymer and the higher shear modulus of solid inorganics.\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.electacta.2025.147434\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2025.147434","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

当使用锂金属阳极时,固态电池比传统电池提供更高的容量和更广泛的电化学和热稳定性。在固态电池(SSBs)中,固体无机电解质如Li7La3Zr2O12 (LLZO)提供了卓越的离子导电性和安全性。由于无机固体电解质(ISEs)易碎,制造薄层和界面会带来机械问题。此外,由于无机电解质的粗糙和刚性接触面,即使在低电流下,固体无机电解质中也有可能形成锂枝晶。这些问题可以通过在锂金属阳极和ISE之间引入聚合物中间层来缓解。然而,锂离子在聚合物和无机电解质中的电导率是不同的。此外,在聚合物中由于离子传输引起的体积膨胀比在ISE中要大。因此,本研究将电池的电化学性能与电极和电解质材料的力学性能相结合,研究引入聚合物中间层对电池性能的影响。在恒流条件下,对于层间厚度较薄的电池,电荷转移过电位随时间的增加更快。当聚合物中间层减少时,通过面应力产生的速率变快。此外,还研究了电镀、弹性和塑性变形对锂金属阳极尺寸变化的影响。结果表明,随着电流密度的增大和层间厚度的增大,金属阳极的尺寸变化更大。考虑过电位损失最小,5 μm ~ 7.5 μm是最合适的聚合物层间厚度。因此,目前的模型为下一代ssb提供了合适的电解质,同时结合了聚合物的良好接触性能和固体无机物的更高剪切模量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Polymer Interlayer Thickness on Solid-State Battery Performance with Electrochemo-Mechanical Coupling
Solid-state batteries provide higher capacity and wider electrochemical and thermal stability when used with lithium metal anode than conventional batteries. In solid-state batteries (SSBs), solid inorganic electrolytes such as Li7La3Zr2O12 (LLZO) offer superior ionic conductivity and safety. As the inorganic solid electrolytes (ISEs) are brittle, creating thin layers and interfaces poses mechanical problems. Also, there is a chance of lithium dendrite formation in solid inorganic electrolytes even at low currents due to the rough and rigid contact surface of inorganic electrolytes. Such problems can be alleviated by introducing a polymer interlayer between the lithium metal anode and the ISE. However, there is a difference in the Li-ion conductivity in polymer and inorganic electrolytes. Besides, the volume expansion due to ion transport is comparatively greater in polymers than in ISE. Hence, in this study, the electrochemical performance of the battery is coupled with the mechanical properties of electrode and electrolyte materials to study the effects of introducing polymer interlayer. It is observed that charge transfer overpotential increases more rapidly with time for thinner interlayer thickness cells when operated under galvanostatic conditions. When the polymer interlayer is reduced, the rate of through-plane stress generation becomes more rapid. Besides, the effect of plating, elastic, and plastic deformation on the dimension change of lithium metal anode is also studied. It is found that the dimensional change of the metal anode is more for higher current density and higher interlayer thickness. Moreover, it is obtained that 5 μm to 7.5 μm is the most suitable polymer interlayer thickness considering minimal overpotential loss. Thus, the present model provides insight into making a suitable electrolyte for next-gen SSBs while combining the good contact properties of the polymer and the higher shear modulus of solid inorganics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信