Haohao Sun, Weiyao Li, Shuning Zhang, Lingjue Yuan, Di Wang, Jiayue Sun, Hongyu Wang
{"title":"污水处理厂活性污泥和生物膜中抗生素耐药基因的差异分析","authors":"Haohao Sun, Weiyao Li, Shuning Zhang, Lingjue Yuan, Di Wang, Jiayue Sun, Hongyu Wang","doi":"10.1016/j.jhazmat.2025.139955","DOIUrl":null,"url":null,"abstract":"Wastewater treatment plants (WWTPs) serve as significant sources of antibiotic resistance genes (ARGs) in natural water bodies, with activated sludge and biofilm being the two most critical biological treatment processes in WWTPs. A systematic comparison of ARG composition in these two processes is essential for optimizing the design and operation of wastewater treatment systems. This study collected samples from 16 WWTPs, including one year of longitudinal monitoring data from a full-scale facility and encompassing five biofilm types. The high-throughput sequencing results revealed that the relative abundance of ARGs in activated sludge was significantly higher than in biofilms, with average relative abundances of 2075.05 ppm and 1288.78 ppm, respectively. We also identified plasmids and microbial community structure as key factors contributing to the differences in ARG composition between activated sludge and biofilm. Plasmids primarily influenced the ARGs associated with enzymatic modification mechanisms, while the microbial community structure mainly impacted the abundance of ARGs, particularly through its effect on <em>Bacteroidia</em>. This structural influence was particularly pronounced on ARGs related to enzymatic inactivation, enzymatic modification, efflux pumps, target modification, and target protection mechanisms. These findings provide valuable insights for improving the management of ARGs in WWTPs and contribute to the development of strategies for mitigating ARG proliferation in wastewater treatment systems.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"11 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential profiles of antibiotic resistance genes in activated sludge and biofilm in wastewater treatment plants\",\"authors\":\"Haohao Sun, Weiyao Li, Shuning Zhang, Lingjue Yuan, Di Wang, Jiayue Sun, Hongyu Wang\",\"doi\":\"10.1016/j.jhazmat.2025.139955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wastewater treatment plants (WWTPs) serve as significant sources of antibiotic resistance genes (ARGs) in natural water bodies, with activated sludge and biofilm being the two most critical biological treatment processes in WWTPs. A systematic comparison of ARG composition in these two processes is essential for optimizing the design and operation of wastewater treatment systems. This study collected samples from 16 WWTPs, including one year of longitudinal monitoring data from a full-scale facility and encompassing five biofilm types. The high-throughput sequencing results revealed that the relative abundance of ARGs in activated sludge was significantly higher than in biofilms, with average relative abundances of 2075.05 ppm and 1288.78 ppm, respectively. We also identified plasmids and microbial community structure as key factors contributing to the differences in ARG composition between activated sludge and biofilm. Plasmids primarily influenced the ARGs associated with enzymatic modification mechanisms, while the microbial community structure mainly impacted the abundance of ARGs, particularly through its effect on <em>Bacteroidia</em>. This structural influence was particularly pronounced on ARGs related to enzymatic inactivation, enzymatic modification, efflux pumps, target modification, and target protection mechanisms. These findings provide valuable insights for improving the management of ARGs in WWTPs and contribute to the development of strategies for mitigating ARG proliferation in wastewater treatment systems.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2025.139955\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.139955","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Differential profiles of antibiotic resistance genes in activated sludge and biofilm in wastewater treatment plants
Wastewater treatment plants (WWTPs) serve as significant sources of antibiotic resistance genes (ARGs) in natural water bodies, with activated sludge and biofilm being the two most critical biological treatment processes in WWTPs. A systematic comparison of ARG composition in these two processes is essential for optimizing the design and operation of wastewater treatment systems. This study collected samples from 16 WWTPs, including one year of longitudinal monitoring data from a full-scale facility and encompassing five biofilm types. The high-throughput sequencing results revealed that the relative abundance of ARGs in activated sludge was significantly higher than in biofilms, with average relative abundances of 2075.05 ppm and 1288.78 ppm, respectively. We also identified plasmids and microbial community structure as key factors contributing to the differences in ARG composition between activated sludge and biofilm. Plasmids primarily influenced the ARGs associated with enzymatic modification mechanisms, while the microbial community structure mainly impacted the abundance of ARGs, particularly through its effect on Bacteroidia. This structural influence was particularly pronounced on ARGs related to enzymatic inactivation, enzymatic modification, efflux pumps, target modification, and target protection mechanisms. These findings provide valuable insights for improving the management of ARGs in WWTPs and contribute to the development of strategies for mitigating ARG proliferation in wastewater treatment systems.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.