钙钛矿尺寸工程中有机a位阳离子的特征引导逆设计。

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Weijie Wu, , , Yu Wang, , , Xiaoting Chen, , , Qingduan Li, , , Yue-Peng Cai, , , Songyang Yuan*, , and , Shengjian Liu*, 
{"title":"钙钛矿尺寸工程中有机a位阳离子的特征引导逆设计。","authors":"Weijie Wu,&nbsp;, ,&nbsp;Yu Wang,&nbsp;, ,&nbsp;Xiaoting Chen,&nbsp;, ,&nbsp;Qingduan Li,&nbsp;, ,&nbsp;Yue-Peng Cai,&nbsp;, ,&nbsp;Songyang Yuan*,&nbsp;, and ,&nbsp;Shengjian Liu*,&nbsp;","doi":"10.1021/acs.jpclett.5c02433","DOIUrl":null,"url":null,"abstract":"<p >Organic spacer cations critically influence the dimensionality and stability of low-dimensional perovskites (LDPs), yet current A-site candidate selection remains largely empirical. Herein, we present a machine-learning-driven molecular generation framework based on a Long Short-Term Memory Network model guided by key molecular descriptors, incorporating a Double-Fit strategy to improve dimensional property alignment and structural rationality of LDPs. Our model inversely generates organic cations targeting specific structural dimensions. Subsequent density functional theory calculations identify candidates with favorable thermodynamic stability and configurational features. Experimental synthesis and structural characterization of the resulting perovskites confirm the model’s predictive accuracy. This approach provides a rational design paradigm for A-site cations in LDPs and establishes a general platform to accelerate discovery of new organic–inorganic hybrid perovskite materials.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 39","pages":"10195–10203"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature-Guided Inverse Design of Organic A-Site Cations for Perovskites Dimensional Engineering\",\"authors\":\"Weijie Wu,&nbsp;, ,&nbsp;Yu Wang,&nbsp;, ,&nbsp;Xiaoting Chen,&nbsp;, ,&nbsp;Qingduan Li,&nbsp;, ,&nbsp;Yue-Peng Cai,&nbsp;, ,&nbsp;Songyang Yuan*,&nbsp;, and ,&nbsp;Shengjian Liu*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c02433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Organic spacer cations critically influence the dimensionality and stability of low-dimensional perovskites (LDPs), yet current A-site candidate selection remains largely empirical. Herein, we present a machine-learning-driven molecular generation framework based on a Long Short-Term Memory Network model guided by key molecular descriptors, incorporating a Double-Fit strategy to improve dimensional property alignment and structural rationality of LDPs. Our model inversely generates organic cations targeting specific structural dimensions. Subsequent density functional theory calculations identify candidates with favorable thermodynamic stability and configurational features. Experimental synthesis and structural characterization of the resulting perovskites confirm the model’s predictive accuracy. This approach provides a rational design paradigm for A-site cations in LDPs and establishes a general platform to accelerate discovery of new organic–inorganic hybrid perovskite materials.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 39\",\"pages\":\"10195–10203\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02433\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02433","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

有机间隔离子对低维钙钛矿(LDPs)的维数和稳定性有重要影响,但目前的a位候选物选择在很大程度上仍是经验性的。在此,我们提出了一个基于长短期记忆网络模型的机器学习驱动的分子生成框架,该框架以关键分子描述符为指导,结合双重拟合策略来提高LDPs的尺寸属性对齐和结构合理性。我们的模型反向生成针对特定结构尺寸的有机阳离子。随后的密度泛函理论计算确定了具有良好热力学稳定性和构型特征的候选物。实验合成和所得钙钛矿的结构表征证实了该模型的预测准确性。该方法为LDPs中的a位阳离子提供了一种合理的设计范式,并为加速发现新的有机-无机杂化钙钛矿材料建立了一个通用平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Feature-Guided Inverse Design of Organic A-Site Cations for Perovskites Dimensional Engineering

Feature-Guided Inverse Design of Organic A-Site Cations for Perovskites Dimensional Engineering

Organic spacer cations critically influence the dimensionality and stability of low-dimensional perovskites (LDPs), yet current A-site candidate selection remains largely empirical. Herein, we present a machine-learning-driven molecular generation framework based on a Long Short-Term Memory Network model guided by key molecular descriptors, incorporating a Double-Fit strategy to improve dimensional property alignment and structural rationality of LDPs. Our model inversely generates organic cations targeting specific structural dimensions. Subsequent density functional theory calculations identify candidates with favorable thermodynamic stability and configurational features. Experimental synthesis and structural characterization of the resulting perovskites confirm the model’s predictive accuracy. This approach provides a rational design paradigm for A-site cations in LDPs and establishes a general platform to accelerate discovery of new organic–inorganic hybrid perovskite materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信