多元素电催化剂发现的多模态机器人平台。

IF 48.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-09-23 DOI:10.1038/s41586-025-09640-5
Zhen Zhang,Zhichu Ren,Chia-Wei Hsu,Weibin Chen,Zhang-Wei Hong,Chi-Feng Lee,Aubrey Penn,Hongbin Xu,Daniel J Zheng,Shuhan Miao,Yimeng Huang,Yifan Gao,Weiyin Chen,Hugh Smith,Yaoshen Niu,Yunsheng Tian,Ying-Rui Lu,Yu-Cheng Shao,Sipei Li,Hsiao-Tsu Wang,Iwnetim I Abate,Pulkit Agrawal,Yang Shao-Horn,Ju Li
{"title":"多元素电催化剂发现的多模态机器人平台。","authors":"Zhen Zhang,Zhichu Ren,Chia-Wei Hsu,Weibin Chen,Zhang-Wei Hong,Chi-Feng Lee,Aubrey Penn,Hongbin Xu,Daniel J Zheng,Shuhan Miao,Yimeng Huang,Yifan Gao,Weiyin Chen,Hugh Smith,Yaoshen Niu,Yunsheng Tian,Ying-Rui Lu,Yu-Cheng Shao,Sipei Li,Hsiao-Tsu Wang,Iwnetim I Abate,Pulkit Agrawal,Yang Shao-Horn,Ju Li","doi":"10.1038/s41586-025-09640-5","DOIUrl":null,"url":null,"abstract":"One of the goals of 'AI for Science' is to discover customized materials through real-world experiments. Pioneering advances have been achieved in computational predictions and the automation of materials synthesis1-7. Yet, most materials experimentation remains constrained to using unimodal active learning (AL) approaches, relying on a single data stream. The potential of AI to interpret experimental complexity remains largely untapped8,9. Here we present Copilot for Real-world Experimental Scientists (CRESt), a platform that integrates large multimodal models (LMMs, incorporating chemical compositions, text embeddings, and microstructural images) with Knowledge-Assisted Bayesian Optimization (KABO) and robotic automation. CRESt employs knowledge-embedding-based search space reduction and adaptive exploration-exploitation strategy to accelerate materials design, high-throughput synthesis and characterization, and electrochemical performance optimization. CRESt allows monitoring with cameras and vision-language-model-driven hypothesis generation to diagnose and correct experimental anomalies. Applied to electrochemical formate oxidation, CRESt explored over 900 catalyst chemistries and 3500 electrochemical tests within 3 months, identifying a state-of-the-art catalyst in the octonary chemical space (Pd-Pt-Cu-Au-Ir-Ce-Nb-Cr) which exhibits a 9.3-fold improvement in cost-specific performance.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"80 1","pages":""},"PeriodicalIF":48.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multimodal robotic platform for multi-element electrocatalyst discovery.\",\"authors\":\"Zhen Zhang,Zhichu Ren,Chia-Wei Hsu,Weibin Chen,Zhang-Wei Hong,Chi-Feng Lee,Aubrey Penn,Hongbin Xu,Daniel J Zheng,Shuhan Miao,Yimeng Huang,Yifan Gao,Weiyin Chen,Hugh Smith,Yaoshen Niu,Yunsheng Tian,Ying-Rui Lu,Yu-Cheng Shao,Sipei Li,Hsiao-Tsu Wang,Iwnetim I Abate,Pulkit Agrawal,Yang Shao-Horn,Ju Li\",\"doi\":\"10.1038/s41586-025-09640-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the goals of 'AI for Science' is to discover customized materials through real-world experiments. Pioneering advances have been achieved in computational predictions and the automation of materials synthesis1-7. Yet, most materials experimentation remains constrained to using unimodal active learning (AL) approaches, relying on a single data stream. The potential of AI to interpret experimental complexity remains largely untapped8,9. Here we present Copilot for Real-world Experimental Scientists (CRESt), a platform that integrates large multimodal models (LMMs, incorporating chemical compositions, text embeddings, and microstructural images) with Knowledge-Assisted Bayesian Optimization (KABO) and robotic automation. CRESt employs knowledge-embedding-based search space reduction and adaptive exploration-exploitation strategy to accelerate materials design, high-throughput synthesis and characterization, and electrochemical performance optimization. CRESt allows monitoring with cameras and vision-language-model-driven hypothesis generation to diagnose and correct experimental anomalies. Applied to electrochemical formate oxidation, CRESt explored over 900 catalyst chemistries and 3500 electrochemical tests within 3 months, identifying a state-of-the-art catalyst in the octonary chemical space (Pd-Pt-Cu-Au-Ir-Ce-Nb-Cr) which exhibits a 9.3-fold improvement in cost-specific performance.\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":48.5000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41586-025-09640-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-09640-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

“科学人工智能”的目标之一是通过现实世界的实验发现定制材料。在计算预测和材料合成自动化方面取得了开创性的进展1-7。然而,大多数材料实验仍然局限于使用单模主动学习(AL)方法,依赖于单一数据流。人工智能解释实验复杂性的潜力在很大程度上仍有待开发8,9。在这里,我们介绍了面向现实世界实验科学家的Copilot (CRESt),这是一个将大型多模态模型(lms,包含化学成分、文本嵌入和微结构图像)与知识辅助贝叶斯优化(KABO)和机器人自动化集成在一起的平台。CRESt采用基于知识嵌入的搜索空间缩减和自适应探索开发策略来加速材料设计、高通量合成和表征以及电化学性能优化。CRESt可以通过摄像头监控和视觉语言模型驱动的假设生成来诊断和纠正实验异常。CRESt应用于电化学甲酸氧化,在3个月内探索了900多种催化剂化学性质和3500次电化学测试,在八元化学领域(Pd-Pt-Cu-Au-Ir-Ce-Nb-Cr)确定了一种最先进的催化剂,其成本比性能提高了9.3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multimodal robotic platform for multi-element electrocatalyst discovery.
One of the goals of 'AI for Science' is to discover customized materials through real-world experiments. Pioneering advances have been achieved in computational predictions and the automation of materials synthesis1-7. Yet, most materials experimentation remains constrained to using unimodal active learning (AL) approaches, relying on a single data stream. The potential of AI to interpret experimental complexity remains largely untapped8,9. Here we present Copilot for Real-world Experimental Scientists (CRESt), a platform that integrates large multimodal models (LMMs, incorporating chemical compositions, text embeddings, and microstructural images) with Knowledge-Assisted Bayesian Optimization (KABO) and robotic automation. CRESt employs knowledge-embedding-based search space reduction and adaptive exploration-exploitation strategy to accelerate materials design, high-throughput synthesis and characterization, and electrochemical performance optimization. CRESt allows monitoring with cameras and vision-language-model-driven hypothesis generation to diagnose and correct experimental anomalies. Applied to electrochemical formate oxidation, CRESt explored over 900 catalyst chemistries and 3500 electrochemical tests within 3 months, identifying a state-of-the-art catalyst in the octonary chemical space (Pd-Pt-Cu-Au-Ir-Ce-Nb-Cr) which exhibits a 9.3-fold improvement in cost-specific performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信