稳定的钙钛矿相能够实现高效的钙钛矿/钙钛矿/硅三结太阳能电池。

IF 38.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Fuzong Xu,Erkan Aydin,Ilhan Yavuz,Caner Deger,Esma Ugur,Jiang Liu,Xuechun Zhang,Arsalan Razzaq,Lujia Xu,Marco Marengo,Badri Vishal,Adi Prasetio,Anand Subbiah,Anil Pininti,Thomas Allen,Stefaan De Wolf
{"title":"稳定的钙钛矿相能够实现高效的钙钛矿/钙钛矿/硅三结太阳能电池。","authors":"Fuzong Xu,Erkan Aydin,Ilhan Yavuz,Caner Deger,Esma Ugur,Jiang Liu,Xuechun Zhang,Arsalan Razzaq,Lujia Xu,Marco Marengo,Badri Vishal,Adi Prasetio,Anand Subbiah,Anil Pininti,Thomas Allen,Stefaan De Wolf","doi":"10.1038/s41563-025-02367-8","DOIUrl":null,"url":null,"abstract":"Perovskite/perovskite/silicon triple-junction solar cells offer notable potential for high power output at low cost, yet their development is hindered by the phase instability of perovskites, which limits both device reproducibility and performance. The ~1.50-eV formamidinium lead triiodide (FAPbI3)-based middle layer degrades during subsequent fabrication steps, and the ~2.0-eV bromide-rich top layer suffers from light-induced phase segregation. Here we address these challenges by introducing ammonium propionic acid to enhance the phase stability in both perovskite layers. This strategy raises the phase transition energy barrier and suppresses vacancy defect formation through additional bonding with lattice cations. These improvements mitigate phase instabilities and enhance the power conversion efficiency of devices based on the modified perovskite films. As a result, perovskite/perovskite/silicon triple-junction solar cells achieve a power conversion efficiency of 28.7% on a 1-cm2 aperture area, with substantially improved reproducibility.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"40 1","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilized perovskite phases enabling efficient perovskite/perovskite/silicon triple-junction solar cells.\",\"authors\":\"Fuzong Xu,Erkan Aydin,Ilhan Yavuz,Caner Deger,Esma Ugur,Jiang Liu,Xuechun Zhang,Arsalan Razzaq,Lujia Xu,Marco Marengo,Badri Vishal,Adi Prasetio,Anand Subbiah,Anil Pininti,Thomas Allen,Stefaan De Wolf\",\"doi\":\"10.1038/s41563-025-02367-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perovskite/perovskite/silicon triple-junction solar cells offer notable potential for high power output at low cost, yet their development is hindered by the phase instability of perovskites, which limits both device reproducibility and performance. The ~1.50-eV formamidinium lead triiodide (FAPbI3)-based middle layer degrades during subsequent fabrication steps, and the ~2.0-eV bromide-rich top layer suffers from light-induced phase segregation. Here we address these challenges by introducing ammonium propionic acid to enhance the phase stability in both perovskite layers. This strategy raises the phase transition energy barrier and suppresses vacancy defect formation through additional bonding with lattice cations. These improvements mitigate phase instabilities and enhance the power conversion efficiency of devices based on the modified perovskite films. As a result, perovskite/perovskite/silicon triple-junction solar cells achieve a power conversion efficiency of 28.7% on a 1-cm2 aperture area, with substantially improved reproducibility.\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":38.5000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41563-025-02367-8\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02367-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿/钙钛矿/硅三结太阳能电池具有显著的低成本高功率输出潜力,但它们的发展受到钙钛矿相不稳定性的阻碍,这限制了器件的可重复性和性能。~1.50 ev的formamidinium triioide (FAPbI3)基中间层在随后的制造步骤中会降解,而~2.0 ev的富溴顶层会发生光致相偏析。在这里,我们通过引入丙酸铵来提高钙钛矿层的相稳定性来解决这些挑战。该策略提高了相变能垒,并通过与晶格阳离子的附加键合抑制了空位缺陷的形成。这些改进减轻了相不稳定性,提高了基于改性钙钛矿薄膜的器件的功率转换效率。因此,钙钛矿/钙钛矿/硅三结太阳能电池在1 cm2孔径面积上实现了28.7%的功率转换效率,并大大提高了再现性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilized perovskite phases enabling efficient perovskite/perovskite/silicon triple-junction solar cells.
Perovskite/perovskite/silicon triple-junction solar cells offer notable potential for high power output at low cost, yet their development is hindered by the phase instability of perovskites, which limits both device reproducibility and performance. The ~1.50-eV formamidinium lead triiodide (FAPbI3)-based middle layer degrades during subsequent fabrication steps, and the ~2.0-eV bromide-rich top layer suffers from light-induced phase segregation. Here we address these challenges by introducing ammonium propionic acid to enhance the phase stability in both perovskite layers. This strategy raises the phase transition energy barrier and suppresses vacancy defect formation through additional bonding with lattice cations. These improvements mitigate phase instabilities and enhance the power conversion efficiency of devices based on the modified perovskite films. As a result, perovskite/perovskite/silicon triple-junction solar cells achieve a power conversion efficiency of 28.7% on a 1-cm2 aperture area, with substantially improved reproducibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信