{"title":"竞争性添加剂策略调节超疏氧/超亲水多孔铜增强液体补充和气体演化。","authors":"Mengliang Hu, , , Weiqi Tang, , , Mou Xu, , , Lin Lin, , , Shu-Shen Lyu, , and , Dong-Chuan Mo*, ","doi":"10.1021/acsnano.5c11662","DOIUrl":null,"url":null,"abstract":"<p >Enhancing mass transfer (liquid replenishment and gas escape) is critical for improving gas-evolution reactions (GERs) in energy conversion, yet a unified mass transfer enhancement mechanism for both chemical (e.g., hydrogen evolution reaction, HER) and physical (e.g., boiling heat transfer, BHT) remains elusive. This study employs a competitive electroreduction additive strategy to fabricate porous copper, simultaneously utilized in HER and BHT. By regulating hydrogen evolution and copper deposition, the method achieves precise pore-structure control and links microstructure, properties (wettability, superaerophobicity, etc.), and performance. In the electrocatalytic HER, compared to smooth copper, the aerophobic surface of Cu0.4H1.0 reduces the overpotential by 178 mV at 10 mA/cm<sup>2</sup>, while the enhanced wettability kinetically facilitates the Volmer step, synergistically improving catalytic efficiency. In contrast, during BHT, the aerophobic property of Cu0.4H2.0 reduces wall superheat by 6.5 K (around 28 kW/m<sup>2</sup>) and 14.6 K (around 1000 kW/m<sup>2</sup>) compared to smooth copper, whereas the superior wettability under high heat flux conditions effectively mitigates heat transfer deterioration. This study not only provides insights into the synergistic application of porous copper materials in both chemical and physical gas-evolution reactions but also offers theoretical guidance and experimental evidence for the design and development of high-efficiency energy conversion materials.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 39","pages":"34998–35014"},"PeriodicalIF":16.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Competitive Additive-Strategy Modulating Superaerophobic/Superhydrophilic Porous Copper for Enhanced Liquid Replenishment and Gas Evolution\",\"authors\":\"Mengliang Hu, , , Weiqi Tang, , , Mou Xu, , , Lin Lin, , , Shu-Shen Lyu, , and , Dong-Chuan Mo*, \",\"doi\":\"10.1021/acsnano.5c11662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Enhancing mass transfer (liquid replenishment and gas escape) is critical for improving gas-evolution reactions (GERs) in energy conversion, yet a unified mass transfer enhancement mechanism for both chemical (e.g., hydrogen evolution reaction, HER) and physical (e.g., boiling heat transfer, BHT) remains elusive. This study employs a competitive electroreduction additive strategy to fabricate porous copper, simultaneously utilized in HER and BHT. By regulating hydrogen evolution and copper deposition, the method achieves precise pore-structure control and links microstructure, properties (wettability, superaerophobicity, etc.), and performance. In the electrocatalytic HER, compared to smooth copper, the aerophobic surface of Cu0.4H1.0 reduces the overpotential by 178 mV at 10 mA/cm<sup>2</sup>, while the enhanced wettability kinetically facilitates the Volmer step, synergistically improving catalytic efficiency. In contrast, during BHT, the aerophobic property of Cu0.4H2.0 reduces wall superheat by 6.5 K (around 28 kW/m<sup>2</sup>) and 14.6 K (around 1000 kW/m<sup>2</sup>) compared to smooth copper, whereas the superior wettability under high heat flux conditions effectively mitigates heat transfer deterioration. This study not only provides insights into the synergistic application of porous copper materials in both chemical and physical gas-evolution reactions but also offers theoretical guidance and experimental evidence for the design and development of high-efficiency energy conversion materials.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 39\",\"pages\":\"34998–35014\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c11662\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c11662","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Competitive Additive-Strategy Modulating Superaerophobic/Superhydrophilic Porous Copper for Enhanced Liquid Replenishment and Gas Evolution
Enhancing mass transfer (liquid replenishment and gas escape) is critical for improving gas-evolution reactions (GERs) in energy conversion, yet a unified mass transfer enhancement mechanism for both chemical (e.g., hydrogen evolution reaction, HER) and physical (e.g., boiling heat transfer, BHT) remains elusive. This study employs a competitive electroreduction additive strategy to fabricate porous copper, simultaneously utilized in HER and BHT. By regulating hydrogen evolution and copper deposition, the method achieves precise pore-structure control and links microstructure, properties (wettability, superaerophobicity, etc.), and performance. In the electrocatalytic HER, compared to smooth copper, the aerophobic surface of Cu0.4H1.0 reduces the overpotential by 178 mV at 10 mA/cm2, while the enhanced wettability kinetically facilitates the Volmer step, synergistically improving catalytic efficiency. In contrast, during BHT, the aerophobic property of Cu0.4H2.0 reduces wall superheat by 6.5 K (around 28 kW/m2) and 14.6 K (around 1000 kW/m2) compared to smooth copper, whereas the superior wettability under high heat flux conditions effectively mitigates heat transfer deterioration. This study not only provides insights into the synergistic application of porous copper materials in both chemical and physical gas-evolution reactions but also offers theoretical guidance and experimental evidence for the design and development of high-efficiency energy conversion materials.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.