George L Wang,Yibei Jiang,Yuying Sun,Fariborz Nasertorabi,Jesse A Weller,Raktim Mitra,Alexander Batyuk,Oscar M Aparicio,Vadim Cherezov,Remo Rohs
{"title":"叉头转录因子新颖的折叠和翅膀结构促进DNA结合。","authors":"George L Wang,Yibei Jiang,Yuying Sun,Fariborz Nasertorabi,Jesse A Weller,Raktim Mitra,Alexander Batyuk,Oscar M Aparicio,Vadim Cherezov,Remo Rohs","doi":"10.1093/nar/gkaf946","DOIUrl":null,"url":null,"abstract":"Forkhead homologue 1 (Fkh1) is a yeast transcription factor that plays essential roles in cell-cycle dynamics. Here, we report the co-crystal structure of the DNA-binding domain (DBD) of the yeast Fkh1 protein in complex with a 19-base pair oligonucleotide containing the core binding site and flanking regions. The three-dimensional structure of the Fkh1-DBD reveals a previously unknown protein fold among all known Forkhead proteins. The winged-helix fold forms base-specific contacts of α-helix H3 with the major groove of the core binding site. Wing 1 and Wing 2 form DNA shape-mediated contacts with the minor groove of the binding site flanking regions. The conformation of Wing 2 is distinct from all known Forkhead proteins, with α-helices H5 and H6 wrapping back onto the protein core, creating a stable Wing 2 loop. Backbone interactions with β-strands S1 and S2 reveal a structural mechanism for previously observed flanking region preferences in SELEX-seq experiments. In vivo yeast experiments on Fkh1 mutants demonstrate that wing residues interacting with flanking regions are important for Fkh1 function. Molecular dynamics simulations relate Fkh1 function to conformational flexibility of wing residues. The novel Forkhead fold enables Fkh1 function with implications, such as structure-based protein design, for other DNA-binding proteins.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"15 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel fold and wing structure of Forkhead transcription factor facilitate DNA binding.\",\"authors\":\"George L Wang,Yibei Jiang,Yuying Sun,Fariborz Nasertorabi,Jesse A Weller,Raktim Mitra,Alexander Batyuk,Oscar M Aparicio,Vadim Cherezov,Remo Rohs\",\"doi\":\"10.1093/nar/gkaf946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forkhead homologue 1 (Fkh1) is a yeast transcription factor that plays essential roles in cell-cycle dynamics. Here, we report the co-crystal structure of the DNA-binding domain (DBD) of the yeast Fkh1 protein in complex with a 19-base pair oligonucleotide containing the core binding site and flanking regions. The three-dimensional structure of the Fkh1-DBD reveals a previously unknown protein fold among all known Forkhead proteins. The winged-helix fold forms base-specific contacts of α-helix H3 with the major groove of the core binding site. Wing 1 and Wing 2 form DNA shape-mediated contacts with the minor groove of the binding site flanking regions. The conformation of Wing 2 is distinct from all known Forkhead proteins, with α-helices H5 and H6 wrapping back onto the protein core, creating a stable Wing 2 loop. Backbone interactions with β-strands S1 and S2 reveal a structural mechanism for previously observed flanking region preferences in SELEX-seq experiments. In vivo yeast experiments on Fkh1 mutants demonstrate that wing residues interacting with flanking regions are important for Fkh1 function. Molecular dynamics simulations relate Fkh1 function to conformational flexibility of wing residues. The novel Forkhead fold enables Fkh1 function with implications, such as structure-based protein design, for other DNA-binding proteins.\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf946\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf946","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Novel fold and wing structure of Forkhead transcription factor facilitate DNA binding.
Forkhead homologue 1 (Fkh1) is a yeast transcription factor that plays essential roles in cell-cycle dynamics. Here, we report the co-crystal structure of the DNA-binding domain (DBD) of the yeast Fkh1 protein in complex with a 19-base pair oligonucleotide containing the core binding site and flanking regions. The three-dimensional structure of the Fkh1-DBD reveals a previously unknown protein fold among all known Forkhead proteins. The winged-helix fold forms base-specific contacts of α-helix H3 with the major groove of the core binding site. Wing 1 and Wing 2 form DNA shape-mediated contacts with the minor groove of the binding site flanking regions. The conformation of Wing 2 is distinct from all known Forkhead proteins, with α-helices H5 and H6 wrapping back onto the protein core, creating a stable Wing 2 loop. Backbone interactions with β-strands S1 and S2 reveal a structural mechanism for previously observed flanking region preferences in SELEX-seq experiments. In vivo yeast experiments on Fkh1 mutants demonstrate that wing residues interacting with flanking regions are important for Fkh1 function. Molecular dynamics simulations relate Fkh1 function to conformational flexibility of wing residues. The novel Forkhead fold enables Fkh1 function with implications, such as structure-based protein design, for other DNA-binding proteins.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.