Rachel Ringquist,Eshant Bhatia,Paramita Chatterjee,Drishti Maniar,Zhou Fang,Page Franz,Liana Kramer,Delta Ghoshal,Neha Sonthi,Emma Downey,Joshua Canlas,Abigail Ochal,Savi Agarwal,Valeria Cuéllar,Grace Harrigan,Ahmet F Coskun,Ankur Singh,Krishnendu Roy
{"title":"用于模拟人类严重流感感染反应的具有免疫能力的肺芯片。","authors":"Rachel Ringquist,Eshant Bhatia,Paramita Chatterjee,Drishti Maniar,Zhou Fang,Page Franz,Liana Kramer,Delta Ghoshal,Neha Sonthi,Emma Downey,Joshua Canlas,Abigail Ochal,Savi Agarwal,Valeria Cuéllar,Grace Harrigan,Ahmet F Coskun,Ankur Singh,Krishnendu Roy","doi":"10.1038/s41551-025-01491-9","DOIUrl":null,"url":null,"abstract":"Severe influenza affects 3-5 million people worldwide each year, resulting in more than 300,000 deaths annually. However, standard-of-care antiviral therapeutics have limited effectiveness in these patients. Current preclinical models of severe influenza fail to accurately recapitulate the human immune response to severe viral infection. Here we develop an immune-competent, microvascularized, human lung-on-a-chip device to model the small airways, successfully demonstrating the cytokine storm, immune cell activation, epithelial cell damage, and other cellular- and tissue-level human immune responses to severe H1N1 infection. We find that interleukin-1β and tumour necrosis factor-α play opposing roles in the initiation and regulation of the cytokine storm associated with severe influenza. Furthermore, we discover the critical stromal-immune CXCL12-CXCR4 interaction and its role in immune response to infection. Our results underscore the importance of stromal cells and immune cells in microphysiological models of severe lung disease, describing a scalable model for severe influenza research. We expect the immune-competent human lung-on-a-chip device to enable critical discoveries in respiratory host-pathogen interactions, therapeutic side effects, vaccine potency evaluation, and crosstalk between systemic and mucosal immunity in human lung.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"19 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An immune-competent lung-on-a-chip for modelling the human severe influenza infection response.\",\"authors\":\"Rachel Ringquist,Eshant Bhatia,Paramita Chatterjee,Drishti Maniar,Zhou Fang,Page Franz,Liana Kramer,Delta Ghoshal,Neha Sonthi,Emma Downey,Joshua Canlas,Abigail Ochal,Savi Agarwal,Valeria Cuéllar,Grace Harrigan,Ahmet F Coskun,Ankur Singh,Krishnendu Roy\",\"doi\":\"10.1038/s41551-025-01491-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Severe influenza affects 3-5 million people worldwide each year, resulting in more than 300,000 deaths annually. However, standard-of-care antiviral therapeutics have limited effectiveness in these patients. Current preclinical models of severe influenza fail to accurately recapitulate the human immune response to severe viral infection. Here we develop an immune-competent, microvascularized, human lung-on-a-chip device to model the small airways, successfully demonstrating the cytokine storm, immune cell activation, epithelial cell damage, and other cellular- and tissue-level human immune responses to severe H1N1 infection. We find that interleukin-1β and tumour necrosis factor-α play opposing roles in the initiation and regulation of the cytokine storm associated with severe influenza. Furthermore, we discover the critical stromal-immune CXCL12-CXCR4 interaction and its role in immune response to infection. Our results underscore the importance of stromal cells and immune cells in microphysiological models of severe lung disease, describing a scalable model for severe influenza research. We expect the immune-competent human lung-on-a-chip device to enable critical discoveries in respiratory host-pathogen interactions, therapeutic side effects, vaccine potency evaluation, and crosstalk between systemic and mucosal immunity in human lung.\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-025-01491-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01491-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
An immune-competent lung-on-a-chip for modelling the human severe influenza infection response.
Severe influenza affects 3-5 million people worldwide each year, resulting in more than 300,000 deaths annually. However, standard-of-care antiviral therapeutics have limited effectiveness in these patients. Current preclinical models of severe influenza fail to accurately recapitulate the human immune response to severe viral infection. Here we develop an immune-competent, microvascularized, human lung-on-a-chip device to model the small airways, successfully demonstrating the cytokine storm, immune cell activation, epithelial cell damage, and other cellular- and tissue-level human immune responses to severe H1N1 infection. We find that interleukin-1β and tumour necrosis factor-α play opposing roles in the initiation and regulation of the cytokine storm associated with severe influenza. Furthermore, we discover the critical stromal-immune CXCL12-CXCR4 interaction and its role in immune response to infection. Our results underscore the importance of stromal cells and immune cells in microphysiological models of severe lung disease, describing a scalable model for severe influenza research. We expect the immune-competent human lung-on-a-chip device to enable critical discoveries in respiratory host-pathogen interactions, therapeutic side effects, vaccine potency evaluation, and crosstalk between systemic and mucosal immunity in human lung.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.