基于空间光谱融合特征的皮肤鳞状细胞癌准确诊断研究。

IF 2.3
Jiaqi Yong, Xiaojing Yu, Chongxuan Tian, Yanhai Zhang, Qi Zhao, Donghai Wang, Wei Li
{"title":"基于空间光谱融合特征的皮肤鳞状细胞癌准确诊断研究。","authors":"Jiaqi Yong, Xiaojing Yu, Chongxuan Tian, Yanhai Zhang, Qi Zhao, Donghai Wang, Wei Li","doi":"10.1002/jbio.202500146","DOIUrl":null,"url":null,"abstract":"<p><p>Cutaneous squamous cell carcinoma (SCC), a prevalent non-melanoma skin malignancy, poses significant diagnostic challenges due to the limitations of conventional clinical methods. This study introduces an advanced diagnostic framework leveraging hyperspectral imaging (HSI) to enhance SCC detection accuracy. The proposed methodology integrates Gray-Level Co-occurrence Matrix, Gabor filters, and Local Binary Patterns for spatial feature extraction, combined with Gramian Angular Field, Markov Transition Field, and Recurrence Plot for spatio-spectral feature transformation. A novel multi-scale hybrid transformer (MSHT) model is developed to classify skin lesions using microscopic HSI data, capturing both local texture details and global spectral-spatial dependencies through hybrid convolutional and self-attention mechanisms. Comparative experiments demonstrate the MSHT model's superior performance, achieving sensitivities of 0.88, 0.84, and 0.87 for actinic keratosis (AK), seborrheic keratosis (SK), and SCC, respectively. This research establishes a robust diagnostic paradigm for SCC and advances the clinical application of HSI technology through rigorous validation.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500146"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Accurate Diagnosis of Cutaneous Squamous Cell Carcinoma Based on Spatio-Spectral Fusion Features.\",\"authors\":\"Jiaqi Yong, Xiaojing Yu, Chongxuan Tian, Yanhai Zhang, Qi Zhao, Donghai Wang, Wei Li\",\"doi\":\"10.1002/jbio.202500146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cutaneous squamous cell carcinoma (SCC), a prevalent non-melanoma skin malignancy, poses significant diagnostic challenges due to the limitations of conventional clinical methods. This study introduces an advanced diagnostic framework leveraging hyperspectral imaging (HSI) to enhance SCC detection accuracy. The proposed methodology integrates Gray-Level Co-occurrence Matrix, Gabor filters, and Local Binary Patterns for spatial feature extraction, combined with Gramian Angular Field, Markov Transition Field, and Recurrence Plot for spatio-spectral feature transformation. A novel multi-scale hybrid transformer (MSHT) model is developed to classify skin lesions using microscopic HSI data, capturing both local texture details and global spectral-spatial dependencies through hybrid convolutional and self-attention mechanisms. Comparative experiments demonstrate the MSHT model's superior performance, achieving sensitivities of 0.88, 0.84, and 0.87 for actinic keratosis (AK), seborrheic keratosis (SK), and SCC, respectively. This research establishes a robust diagnostic paradigm for SCC and advances the clinical application of HSI technology through rigorous validation.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e202500146\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202500146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

皮肤鳞状细胞癌(SCC)是一种常见的非黑色素瘤皮肤恶性肿瘤,由于传统临床方法的局限性,对其诊断提出了重大挑战。本研究介绍了一种先进的诊断框架,利用高光谱成像(HSI)来提高SCC检测的准确性。该方法结合灰度共现矩阵、Gabor滤波器和局部二值模式进行空间特征提取,结合Gramian角场、Markov过渡场和递归图进行空间光谱特征变换。提出了一种新的多尺度混合变压器(MSHT)模型,利用微观HSI数据对皮肤病变进行分类,通过混合卷积和自关注机制捕获局部纹理细节和全局光谱空间依赖关系。对比实验证明了MSHT模型的优越性能,对光化性角化病(AK)、脂溢性角化病(SK)和SCC的敏感性分别为0.88、0.84和0.87。本研究为SCC建立了一个可靠的诊断范例,并通过严格的验证推进了HSI技术的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Accurate Diagnosis of Cutaneous Squamous Cell Carcinoma Based on Spatio-Spectral Fusion Features.

Cutaneous squamous cell carcinoma (SCC), a prevalent non-melanoma skin malignancy, poses significant diagnostic challenges due to the limitations of conventional clinical methods. This study introduces an advanced diagnostic framework leveraging hyperspectral imaging (HSI) to enhance SCC detection accuracy. The proposed methodology integrates Gray-Level Co-occurrence Matrix, Gabor filters, and Local Binary Patterns for spatial feature extraction, combined with Gramian Angular Field, Markov Transition Field, and Recurrence Plot for spatio-spectral feature transformation. A novel multi-scale hybrid transformer (MSHT) model is developed to classify skin lesions using microscopic HSI data, capturing both local texture details and global spectral-spatial dependencies through hybrid convolutional and self-attention mechanisms. Comparative experiments demonstrate the MSHT model's superior performance, achieving sensitivities of 0.88, 0.84, and 0.87 for actinic keratosis (AK), seborrheic keratosis (SK), and SCC, respectively. This research establishes a robust diagnostic paradigm for SCC and advances the clinical application of HSI technology through rigorous validation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信