一种用于法医调查中碎裂文件重建的随机优化方法。

IF 1.8
Aqi Dong, Volodymyr Melnykov
{"title":"一种用于法医调查中碎裂文件重建的随机优化方法。","authors":"Aqi Dong, Volodymyr Melnykov","doi":"10.1111/1556-4029.70182","DOIUrl":null,"url":null,"abstract":"<p><p>Document shredding remains a common method for destroying sensitive information, creating significant challenges for forensic investigators seeking to recover such materials as evidence. This paper addresses shredded document reconstruction through a stochastic optimization approach inspired by Markov chain Monte Carlo (MCMC) methods. Unlike traditional approaches relying on physical edge matching-suitable for hand-torn documents but computationally prohibitive for cross-cut shredding-our method evaluates visual content matches through edge compatibility metrics. We develop a specialized acceptance criterion balancing exploration of diverse configurations with exploitation of promising solutions. The method employs gamma distribution modeling of edge deviations with maximum likelihood parameter estimation, providing an adaptive framework responsive to reconstruction progress. Through evaluation with over 1100 document instances spanning typed text, handwritten notes, photographs, and mixed-content materials, we demonstrate robust performance across diverse document types. Empirical comparisons reveal that while simulated annealing (SA) and genetic algorithms (GA) achieve only marginal cost reductions (1%-13%), our approach successfully reconstructs documents that these standard metaheuristics cannot solve. The algorithm handles intermixed fragments from multiple documents-common in forensic casework-with performance analysis showing content-rich regions assembling faster than uniform areas. Validation on physically shredded documents from the DARPA Shredder Challenge confirms practical utility where traditional methods fail. For complex reconstructions, our semi-automated approach incorporates human guidance at intermediate stages, reducing computation time while maintaining accuracy. This research advances forensic document examination capabilities, offering a flexible framework adaptable to various document types encountered in investigative practice.</p>","PeriodicalId":94080,"journal":{"name":"Journal of forensic sciences","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stochastic optimization approach for shredded document reconstruction in forensic investigations.\",\"authors\":\"Aqi Dong, Volodymyr Melnykov\",\"doi\":\"10.1111/1556-4029.70182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Document shredding remains a common method for destroying sensitive information, creating significant challenges for forensic investigators seeking to recover such materials as evidence. This paper addresses shredded document reconstruction through a stochastic optimization approach inspired by Markov chain Monte Carlo (MCMC) methods. Unlike traditional approaches relying on physical edge matching-suitable for hand-torn documents but computationally prohibitive for cross-cut shredding-our method evaluates visual content matches through edge compatibility metrics. We develop a specialized acceptance criterion balancing exploration of diverse configurations with exploitation of promising solutions. The method employs gamma distribution modeling of edge deviations with maximum likelihood parameter estimation, providing an adaptive framework responsive to reconstruction progress. Through evaluation with over 1100 document instances spanning typed text, handwritten notes, photographs, and mixed-content materials, we demonstrate robust performance across diverse document types. Empirical comparisons reveal that while simulated annealing (SA) and genetic algorithms (GA) achieve only marginal cost reductions (1%-13%), our approach successfully reconstructs documents that these standard metaheuristics cannot solve. The algorithm handles intermixed fragments from multiple documents-common in forensic casework-with performance analysis showing content-rich regions assembling faster than uniform areas. Validation on physically shredded documents from the DARPA Shredder Challenge confirms practical utility where traditional methods fail. For complex reconstructions, our semi-automated approach incorporates human guidance at intermediate stages, reducing computation time while maintaining accuracy. This research advances forensic document examination capabilities, offering a flexible framework adaptable to various document types encountered in investigative practice.</p>\",\"PeriodicalId\":94080,\"journal\":{\"name\":\"Journal of forensic sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of forensic sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/1556-4029.70182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/1556-4029.70182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

粉碎文件仍然是销毁敏感信息的常用方法,这给寻求恢复这类材料作为证据的法医调查人员带来了重大挑战。本文通过一种受马尔科夫链蒙特卡罗(MCMC)方法启发的随机优化方法来解决切碎的文档重建问题。与依赖物理边缘匹配的传统方法(适合手工撕裂的文档,但计算上禁止横切切分)不同,我们的方法通过边缘兼容性度量来评估视觉内容匹配。我们开发了一个专门的验收标准,平衡了对不同配置的探索和对有前途的解决方案的开发。该方法利用最大似然参数估计对边缘偏差进行伽玛分布建模,提供了一个响应重建进度的自适应框架。通过对1100多个文档实例的评估,包括打字文本、手写笔记、照片和混合内容材料,我们展示了跨不同文档类型的强大性能。实证比较表明,虽然模拟退火(SA)和遗传算法(GA)只能实现边际成本降低(1%-13%),但我们的方法成功地重建了这些标准元启发式方法无法解决的文档。该算法处理来自多个文档的混合片段(在法医案例中很常见),性能分析显示,内容丰富的区域比统一的区域组装得更快。DARPA碎纸机挑战赛对物理碎纸文件的验证证实了传统方法无法实现的实用性。对于复杂的重建,我们的半自动化方法在中间阶段采用人工指导,在保持准确性的同时减少了计算时间。这项研究提高了法医文件检查能力,提供了一个灵活的框架,适用于调查实践中遇到的各种文件类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stochastic optimization approach for shredded document reconstruction in forensic investigations.

Document shredding remains a common method for destroying sensitive information, creating significant challenges for forensic investigators seeking to recover such materials as evidence. This paper addresses shredded document reconstruction through a stochastic optimization approach inspired by Markov chain Monte Carlo (MCMC) methods. Unlike traditional approaches relying on physical edge matching-suitable for hand-torn documents but computationally prohibitive for cross-cut shredding-our method evaluates visual content matches through edge compatibility metrics. We develop a specialized acceptance criterion balancing exploration of diverse configurations with exploitation of promising solutions. The method employs gamma distribution modeling of edge deviations with maximum likelihood parameter estimation, providing an adaptive framework responsive to reconstruction progress. Through evaluation with over 1100 document instances spanning typed text, handwritten notes, photographs, and mixed-content materials, we demonstrate robust performance across diverse document types. Empirical comparisons reveal that while simulated annealing (SA) and genetic algorithms (GA) achieve only marginal cost reductions (1%-13%), our approach successfully reconstructs documents that these standard metaheuristics cannot solve. The algorithm handles intermixed fragments from multiple documents-common in forensic casework-with performance analysis showing content-rich regions assembling faster than uniform areas. Validation on physically shredded documents from the DARPA Shredder Challenge confirms practical utility where traditional methods fail. For complex reconstructions, our semi-automated approach incorporates human guidance at intermediate stages, reducing computation time while maintaining accuracy. This research advances forensic document examination capabilities, offering a flexible framework adaptable to various document types encountered in investigative practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信