深度学习用于房室反流诊断:一项外部验证研究。

IF 4.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2025-07-15 eCollection Date: 2025-09-01 DOI:10.1093/ehjdh/ztaf078
Ido Cohen, Jeffrey G Malins, Michal Cohen-Shelly, Yossi Asaf, Michael Fiman, Kobi Faierstein, Lior Fisher, Karin Sudri, Ehud Raanani, Ehud Schwammenthal, Robert Klempfner, Elad Maor
{"title":"深度学习用于房室反流诊断:一项外部验证研究。","authors":"Ido Cohen, Jeffrey G Malins, Michal Cohen-Shelly, Yossi Asaf, Michael Fiman, Kobi Faierstein, Lior Fisher, Karin Sudri, Ehud Raanani, Ehud Schwammenthal, Robert Klempfner, Elad Maor","doi":"10.1093/ehjdh/ztaf078","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Mitral and tricuspid regurgitation (MR and TR) are common in older adults and associated with substantial morbidity and mortality. While transthoracic echocardiography (TTE) is the diagnostic gold standard, access remains limited in many care settings. Artificial intelligence (AI)-based echocardiographic analysis may help address this diagnostic gap.</p><p><strong>Methods and results: </strong>We externally validated a deep learning algorithm developed by Aisap.ai using TTE studies from the Mayo Clinic Health System (2013-23). The model analyses echocardiographic images to classify atrioventricular regurgitation severity and was evaluated against cardiologist interpretations. Performance was assessed using binary (normal-mild vs. moderate-severe) and ordinal (normal, mild, moderate, severe) classification schemes. Among 1541 eligible TTEs, the model returned predictions for 578 studies (38%). Performance analysis was limited to these cases. The MR cohort included 280 studies and the TR cohort 298. For MR, the model achieved an area under the receiver operating characteristic curve (AUC) of 0.98 [95% confidence interval (CI): 0.97-0.99], with 91% accuracy, 95% sensitivity, and 89% specificity. For TR, the AUC was 0.96 (95% CI: 0.94-0.98), with 84% accuracy, 91% sensitivity, and 80% specificity.</p><p><strong>Conclusion: </strong>In cases where a prediction was generated, the model demonstrated high diagnostic performance in identifying clinically significant atrioventricular regurgitation. These findings support the feasibility of AI-assisted echocardiography in diverse populations, while underscoring the need for technical alignment between model requirements and local acquisition practices to ensure real-world applicability.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 5","pages":"949-958"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450501/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning for atrioventricular regurgitation diagnosis: an external validation study.\",\"authors\":\"Ido Cohen, Jeffrey G Malins, Michal Cohen-Shelly, Yossi Asaf, Michael Fiman, Kobi Faierstein, Lior Fisher, Karin Sudri, Ehud Raanani, Ehud Schwammenthal, Robert Klempfner, Elad Maor\",\"doi\":\"10.1093/ehjdh/ztaf078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Mitral and tricuspid regurgitation (MR and TR) are common in older adults and associated with substantial morbidity and mortality. While transthoracic echocardiography (TTE) is the diagnostic gold standard, access remains limited in many care settings. Artificial intelligence (AI)-based echocardiographic analysis may help address this diagnostic gap.</p><p><strong>Methods and results: </strong>We externally validated a deep learning algorithm developed by Aisap.ai using TTE studies from the Mayo Clinic Health System (2013-23). The model analyses echocardiographic images to classify atrioventricular regurgitation severity and was evaluated against cardiologist interpretations. Performance was assessed using binary (normal-mild vs. moderate-severe) and ordinal (normal, mild, moderate, severe) classification schemes. Among 1541 eligible TTEs, the model returned predictions for 578 studies (38%). Performance analysis was limited to these cases. The MR cohort included 280 studies and the TR cohort 298. For MR, the model achieved an area under the receiver operating characteristic curve (AUC) of 0.98 [95% confidence interval (CI): 0.97-0.99], with 91% accuracy, 95% sensitivity, and 89% specificity. For TR, the AUC was 0.96 (95% CI: 0.94-0.98), with 84% accuracy, 91% sensitivity, and 80% specificity.</p><p><strong>Conclusion: </strong>In cases where a prediction was generated, the model demonstrated high diagnostic performance in identifying clinically significant atrioventricular regurgitation. These findings support the feasibility of AI-assisted echocardiography in diverse populations, while underscoring the need for technical alignment between model requirements and local acquisition practices to ensure real-world applicability.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":\"6 5\",\"pages\":\"949-958\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450501/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztaf078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:二尖瓣和三尖瓣反流(MR和TR)在老年人中很常见,并与大量发病率和死亡率相关。虽然经胸超声心动图(TTE)是诊断的金标准,但在许多护理机构中,获取仍然有限。基于人工智能(AI)的超声心动图分析可能有助于解决这一诊断差距。方法和结果:我们对Aisap开发的深度学习算法进行了外部验证。我使用梅奥诊所卫生系统(2013-23)的TTE研究。该模型分析超声心动图图像来分类房室反流严重程度,并根据心脏病专家的解释进行评估。使用二元(正常-轻度vs.中度-重度)和有序(正常、轻度、中度、重度)分类方案评估绩效。在1541名合格的tte中,该模型返回了578项研究(38%)的预测结果。性能分析仅限于这些情况。MR队列包括280项研究,TR队列包括298项研究。对于MR,该模型的受试者工作特征曲线下面积(AUC)为0.98[95%置信区间(CI): 0.97-0.99],准确率为91%,灵敏度为95%,特异性为89%。对于TR, AUC为0.96 (95% CI: 0.94-0.98),准确率为84%,灵敏度为91%,特异性为80%。结论:在产生预测的情况下,该模型在识别临床显著的房室反流方面表现出较高的诊断性能。这些发现支持了人工智能辅助超声心动图在不同人群中的可行性,同时强调了模型要求和当地采集实践之间的技术一致性,以确保现实世界的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep learning for atrioventricular regurgitation diagnosis: an external validation study.

Deep learning for atrioventricular regurgitation diagnosis: an external validation study.

Deep learning for atrioventricular regurgitation diagnosis: an external validation study.

Deep learning for atrioventricular regurgitation diagnosis: an external validation study.

Aims: Mitral and tricuspid regurgitation (MR and TR) are common in older adults and associated with substantial morbidity and mortality. While transthoracic echocardiography (TTE) is the diagnostic gold standard, access remains limited in many care settings. Artificial intelligence (AI)-based echocardiographic analysis may help address this diagnostic gap.

Methods and results: We externally validated a deep learning algorithm developed by Aisap.ai using TTE studies from the Mayo Clinic Health System (2013-23). The model analyses echocardiographic images to classify atrioventricular regurgitation severity and was evaluated against cardiologist interpretations. Performance was assessed using binary (normal-mild vs. moderate-severe) and ordinal (normal, mild, moderate, severe) classification schemes. Among 1541 eligible TTEs, the model returned predictions for 578 studies (38%). Performance analysis was limited to these cases. The MR cohort included 280 studies and the TR cohort 298. For MR, the model achieved an area under the receiver operating characteristic curve (AUC) of 0.98 [95% confidence interval (CI): 0.97-0.99], with 91% accuracy, 95% sensitivity, and 89% specificity. For TR, the AUC was 0.96 (95% CI: 0.94-0.98), with 84% accuracy, 91% sensitivity, and 80% specificity.

Conclusion: In cases where a prediction was generated, the model demonstrated high diagnostic performance in identifying clinically significant atrioventricular regurgitation. These findings support the feasibility of AI-assisted echocardiography in diverse populations, while underscoring the need for technical alignment between model requirements and local acquisition practices to ensure real-world applicability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信