Ido Cohen, Jeffrey G Malins, Michal Cohen-Shelly, Yossi Asaf, Michael Fiman, Kobi Faierstein, Lior Fisher, Karin Sudri, Ehud Raanani, Ehud Schwammenthal, Robert Klempfner, Elad Maor
{"title":"深度学习用于房室反流诊断:一项外部验证研究。","authors":"Ido Cohen, Jeffrey G Malins, Michal Cohen-Shelly, Yossi Asaf, Michael Fiman, Kobi Faierstein, Lior Fisher, Karin Sudri, Ehud Raanani, Ehud Schwammenthal, Robert Klempfner, Elad Maor","doi":"10.1093/ehjdh/ztaf078","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Mitral and tricuspid regurgitation (MR and TR) are common in older adults and associated with substantial morbidity and mortality. While transthoracic echocardiography (TTE) is the diagnostic gold standard, access remains limited in many care settings. Artificial intelligence (AI)-based echocardiographic analysis may help address this diagnostic gap.</p><p><strong>Methods and results: </strong>We externally validated a deep learning algorithm developed by Aisap.ai using TTE studies from the Mayo Clinic Health System (2013-23). The model analyses echocardiographic images to classify atrioventricular regurgitation severity and was evaluated against cardiologist interpretations. Performance was assessed using binary (normal-mild vs. moderate-severe) and ordinal (normal, mild, moderate, severe) classification schemes. Among 1541 eligible TTEs, the model returned predictions for 578 studies (38%). Performance analysis was limited to these cases. The MR cohort included 280 studies and the TR cohort 298. For MR, the model achieved an area under the receiver operating characteristic curve (AUC) of 0.98 [95% confidence interval (CI): 0.97-0.99], with 91% accuracy, 95% sensitivity, and 89% specificity. For TR, the AUC was 0.96 (95% CI: 0.94-0.98), with 84% accuracy, 91% sensitivity, and 80% specificity.</p><p><strong>Conclusion: </strong>In cases where a prediction was generated, the model demonstrated high diagnostic performance in identifying clinically significant atrioventricular regurgitation. These findings support the feasibility of AI-assisted echocardiography in diverse populations, while underscoring the need for technical alignment between model requirements and local acquisition practices to ensure real-world applicability.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 5","pages":"949-958"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450501/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning for atrioventricular regurgitation diagnosis: an external validation study.\",\"authors\":\"Ido Cohen, Jeffrey G Malins, Michal Cohen-Shelly, Yossi Asaf, Michael Fiman, Kobi Faierstein, Lior Fisher, Karin Sudri, Ehud Raanani, Ehud Schwammenthal, Robert Klempfner, Elad Maor\",\"doi\":\"10.1093/ehjdh/ztaf078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Mitral and tricuspid regurgitation (MR and TR) are common in older adults and associated with substantial morbidity and mortality. While transthoracic echocardiography (TTE) is the diagnostic gold standard, access remains limited in many care settings. Artificial intelligence (AI)-based echocardiographic analysis may help address this diagnostic gap.</p><p><strong>Methods and results: </strong>We externally validated a deep learning algorithm developed by Aisap.ai using TTE studies from the Mayo Clinic Health System (2013-23). The model analyses echocardiographic images to classify atrioventricular regurgitation severity and was evaluated against cardiologist interpretations. Performance was assessed using binary (normal-mild vs. moderate-severe) and ordinal (normal, mild, moderate, severe) classification schemes. Among 1541 eligible TTEs, the model returned predictions for 578 studies (38%). Performance analysis was limited to these cases. The MR cohort included 280 studies and the TR cohort 298. For MR, the model achieved an area under the receiver operating characteristic curve (AUC) of 0.98 [95% confidence interval (CI): 0.97-0.99], with 91% accuracy, 95% sensitivity, and 89% specificity. For TR, the AUC was 0.96 (95% CI: 0.94-0.98), with 84% accuracy, 91% sensitivity, and 80% specificity.</p><p><strong>Conclusion: </strong>In cases where a prediction was generated, the model demonstrated high diagnostic performance in identifying clinically significant atrioventricular regurgitation. These findings support the feasibility of AI-assisted echocardiography in diverse populations, while underscoring the need for technical alignment between model requirements and local acquisition practices to ensure real-world applicability.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":\"6 5\",\"pages\":\"949-958\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450501/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztaf078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Deep learning for atrioventricular regurgitation diagnosis: an external validation study.
Aims: Mitral and tricuspid regurgitation (MR and TR) are common in older adults and associated with substantial morbidity and mortality. While transthoracic echocardiography (TTE) is the diagnostic gold standard, access remains limited in many care settings. Artificial intelligence (AI)-based echocardiographic analysis may help address this diagnostic gap.
Methods and results: We externally validated a deep learning algorithm developed by Aisap.ai using TTE studies from the Mayo Clinic Health System (2013-23). The model analyses echocardiographic images to classify atrioventricular regurgitation severity and was evaluated against cardiologist interpretations. Performance was assessed using binary (normal-mild vs. moderate-severe) and ordinal (normal, mild, moderate, severe) classification schemes. Among 1541 eligible TTEs, the model returned predictions for 578 studies (38%). Performance analysis was limited to these cases. The MR cohort included 280 studies and the TR cohort 298. For MR, the model achieved an area under the receiver operating characteristic curve (AUC) of 0.98 [95% confidence interval (CI): 0.97-0.99], with 91% accuracy, 95% sensitivity, and 89% specificity. For TR, the AUC was 0.96 (95% CI: 0.94-0.98), with 84% accuracy, 91% sensitivity, and 80% specificity.
Conclusion: In cases where a prediction was generated, the model demonstrated high diagnostic performance in identifying clinically significant atrioventricular regurgitation. These findings support the feasibility of AI-assisted echocardiography in diverse populations, while underscoring the need for technical alignment between model requirements and local acquisition practices to ensure real-world applicability.