保留射血分数预测心力衰竭的人工智能心电图模型:一项单中心研究。

IF 4.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2025-07-17 eCollection Date: 2025-09-01 DOI:10.1093/ehjdh/ztaf080
David Hong, Sung-Hee Song, Heayoung Shin, Minjung Bak, Juwon Kim, Darae Kim, Ju Youn Kim, Jeong Hoon Yang, Seung-Jung Park, Jin-Oh Choi, Young Keun On, Kyoung-Min Park
{"title":"保留射血分数预测心力衰竭的人工智能心电图模型:一项单中心研究。","authors":"David Hong, Sung-Hee Song, Heayoung Shin, Minjung Bak, Juwon Kim, Darae Kim, Ju Youn Kim, Jeong Hoon Yang, Seung-Jung Park, Jin-Oh Choi, Young Keun On, Kyoung-Min Park","doi":"10.1093/ehjdh/ztaf080","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Heart failure with preserved ejection fraction (HFpEF) is difficult to diagnose due to the lack of a definitive diagnostic marker; multiple tests are required, including advanced evaluations. This study aimed to develop an artificial intelligence (AI)-enabled electrocardiogram (ECG) model for predicting HFpEF.</p><p><strong>Methods and results: </strong>This retrospective cohort study included patients from a single tertiary centre who underwent echocardiography, N-terminal prohormone of B-type natriuretic peptide measurement, and ECG within a defined timeframe. Patients were classified as HFpEF (HFA-PEFF score ≥5) or control (HFA-PEFF score <5). Patients were divided into training, validation, and test subsets at a 7:1:2 ratio for model development and validation. Using the collected ECGs, a convolutional neural network was trained to predict HFpEF; its performance was assessed using the area under the receiver operating characteristic curve (AUROC). Among the 13 081 patients included, 5795 (44.3%) were classified as HFpEF and 7286 (55.7%) were classified as control. The AI-enabled ECG model demonstrated good discriminative performance [AUROC 0.81; 95% confidence interval (CI) 0.79-0.82]. Subgroup analyses stratified by HFpEF risk factors confirmed consistent model performance. Prognostic evaluation revealed that patients with a positive AI-ECG classification experienced significantly worse outcomes relative to those with a negative classification, including higher risks of cardiac death (1.1% vs. 0.1%; hazard ratio 9.56; 95% CI 1.24-73.53; <i>P</i> = 0.030) and heart failure hospitalization (2.8% vs. 0.6%; hazard ratio 5.91; 95% CI 2.08-16.81; <i>P</i> = 0.001) at 5 year.</p><p><strong>Conclusion: </strong>The AI-ECG model is a reliable tool for predicting HFpEF, as defined by the HFA-PEFF score, and effectively stratifies patients according to prognosis. Integration of this model into clinical practice may simplify and enhance the diagnostic process for HFpEF.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 5","pages":"959-968"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450526/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-enabled electrocardiogram model for predicting heart failure with preserved ejection fraction: a single-center study.\",\"authors\":\"David Hong, Sung-Hee Song, Heayoung Shin, Minjung Bak, Juwon Kim, Darae Kim, Ju Youn Kim, Jeong Hoon Yang, Seung-Jung Park, Jin-Oh Choi, Young Keun On, Kyoung-Min Park\",\"doi\":\"10.1093/ehjdh/ztaf080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Heart failure with preserved ejection fraction (HFpEF) is difficult to diagnose due to the lack of a definitive diagnostic marker; multiple tests are required, including advanced evaluations. This study aimed to develop an artificial intelligence (AI)-enabled electrocardiogram (ECG) model for predicting HFpEF.</p><p><strong>Methods and results: </strong>This retrospective cohort study included patients from a single tertiary centre who underwent echocardiography, N-terminal prohormone of B-type natriuretic peptide measurement, and ECG within a defined timeframe. Patients were classified as HFpEF (HFA-PEFF score ≥5) or control (HFA-PEFF score <5). Patients were divided into training, validation, and test subsets at a 7:1:2 ratio for model development and validation. Using the collected ECGs, a convolutional neural network was trained to predict HFpEF; its performance was assessed using the area under the receiver operating characteristic curve (AUROC). Among the 13 081 patients included, 5795 (44.3%) were classified as HFpEF and 7286 (55.7%) were classified as control. The AI-enabled ECG model demonstrated good discriminative performance [AUROC 0.81; 95% confidence interval (CI) 0.79-0.82]. Subgroup analyses stratified by HFpEF risk factors confirmed consistent model performance. Prognostic evaluation revealed that patients with a positive AI-ECG classification experienced significantly worse outcomes relative to those with a negative classification, including higher risks of cardiac death (1.1% vs. 0.1%; hazard ratio 9.56; 95% CI 1.24-73.53; <i>P</i> = 0.030) and heart failure hospitalization (2.8% vs. 0.6%; hazard ratio 5.91; 95% CI 2.08-16.81; <i>P</i> = 0.001) at 5 year.</p><p><strong>Conclusion: </strong>The AI-ECG model is a reliable tool for predicting HFpEF, as defined by the HFA-PEFF score, and effectively stratifies patients according to prognosis. Integration of this model into clinical practice may simplify and enhance the diagnostic process for HFpEF.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":\"6 5\",\"pages\":\"959-968\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450526/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztaf080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:由于缺乏明确的诊断指标,保留射血分数的心力衰竭(HFpEF)难以诊断;需要进行多次测试,包括高级评估。本研究旨在开发一种人工智能(AI)支持的心电图(ECG)模型来预测HFpEF。方法和结果:这项回顾性队列研究包括来自单一三级中心的患者,他们在规定的时间内接受了超声心动图、b型利钠肽n端激素原测量和心电图检查。患者在5年时被分为HFpEF (HFA-PEFF评分≥5)或对照组(HFA-PEFF评分P = 0.030)和心力衰竭住院(2.8% vs. 0.6%;风险比5.91;95% CI 2.08-16.81; P = 0.001)。结论:AI-ECG模型是预测HFA-PEFF评分定义的HFpEF的可靠工具,可根据预后对患者进行有效分层。将该模型整合到临床实践中可以简化和提高HFpEF的诊断过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial intelligence-enabled electrocardiogram model for predicting heart failure with preserved ejection fraction: a single-center study.

Artificial intelligence-enabled electrocardiogram model for predicting heart failure with preserved ejection fraction: a single-center study.

Artificial intelligence-enabled electrocardiogram model for predicting heart failure with preserved ejection fraction: a single-center study.

Artificial intelligence-enabled electrocardiogram model for predicting heart failure with preserved ejection fraction: a single-center study.

Aims: Heart failure with preserved ejection fraction (HFpEF) is difficult to diagnose due to the lack of a definitive diagnostic marker; multiple tests are required, including advanced evaluations. This study aimed to develop an artificial intelligence (AI)-enabled electrocardiogram (ECG) model for predicting HFpEF.

Methods and results: This retrospective cohort study included patients from a single tertiary centre who underwent echocardiography, N-terminal prohormone of B-type natriuretic peptide measurement, and ECG within a defined timeframe. Patients were classified as HFpEF (HFA-PEFF score ≥5) or control (HFA-PEFF score <5). Patients were divided into training, validation, and test subsets at a 7:1:2 ratio for model development and validation. Using the collected ECGs, a convolutional neural network was trained to predict HFpEF; its performance was assessed using the area under the receiver operating characteristic curve (AUROC). Among the 13 081 patients included, 5795 (44.3%) were classified as HFpEF and 7286 (55.7%) were classified as control. The AI-enabled ECG model demonstrated good discriminative performance [AUROC 0.81; 95% confidence interval (CI) 0.79-0.82]. Subgroup analyses stratified by HFpEF risk factors confirmed consistent model performance. Prognostic evaluation revealed that patients with a positive AI-ECG classification experienced significantly worse outcomes relative to those with a negative classification, including higher risks of cardiac death (1.1% vs. 0.1%; hazard ratio 9.56; 95% CI 1.24-73.53; P = 0.030) and heart failure hospitalization (2.8% vs. 0.6%; hazard ratio 5.91; 95% CI 2.08-16.81; P = 0.001) at 5 year.

Conclusion: The AI-ECG model is a reliable tool for predicting HFpEF, as defined by the HFA-PEFF score, and effectively stratifies patients according to prognosis. Integration of this model into clinical practice may simplify and enhance the diagnostic process for HFpEF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信