“通过结构化临床文件和生物信号衍生表型合成推进心血管风险识别”项目:概念设计、项目规划和首次实施经验。

IF 4.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2025-06-30 eCollection Date: 2025-09-01 DOI:10.1093/ehjdh/ztaf075
Dominik Felbel, Merten Prüser, Constanze Schmidt, Björn Schreiweis, Nicolai Spicher, Wolfgang Rottbauer, Julian Varghese, Andreas Zietzer, Stefan Störk, Christoph Dieterich, Dagmar Krefting, Eimo Martens, Martin Sedlmayr, Dario Bongiovanni, Christoph B Olivier, Hendrik Lapp, Hannes H J G Schmidt, Julius L Katzmann, Felix Nensa, Norbert Frey, Gudrun S Ulrich-Merzenich, Carina A Peter, Peter Heuschmann, Udo Bavendiek, Sven Zenker
{"title":"“通过结构化临床文件和生物信号衍生表型合成推进心血管风险识别”项目:概念设计、项目规划和首次实施经验。","authors":"Dominik Felbel, Merten Prüser, Constanze Schmidt, Björn Schreiweis, Nicolai Spicher, Wolfgang Rottbauer, Julian Varghese, Andreas Zietzer, Stefan Störk, Christoph Dieterich, Dagmar Krefting, Eimo Martens, Martin Sedlmayr, Dario Bongiovanni, Christoph B Olivier, Hendrik Lapp, Hannes H J G Schmidt, Julius L Katzmann, Felix Nensa, Norbert Frey, Gudrun S Ulrich-Merzenich, Carina A Peter, Peter Heuschmann, Udo Bavendiek, Sven Zenker","doi":"10.1093/ehjdh/ztaf075","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Personalized risk assessment tools (PRTs) are recommended by cardiovascular guidelines to tailor prevention, diagnosis, and treatment. However, PRT implementation in clinical routine is poor. ACRIBiS (Advancing Cardiovascular Risk Identification with Structured Clinical Documentation and Biosignal Derived Phenotypes Synthesis) aims to establish interoperable infrastructures for standardized documentation of routine data and integration of high-resolution biosignals (HRBs) enabling data-based risk assessment.</p><p><strong>Methods and results: </strong>Established cardiovascular risk scores were selected by their predictive performance and served as basis for building a core cardiovascular dataset with risk-relevant clinical routine information. Data items not yet represented in the Medical Informatics Inititative (MII) Core Dataset (CDS) FHIR profiles will be added to an extension module 'Cardiology' allowing for maximum interoperability. HRB integration will be implemented at each site through a modular infrastructure for electrocardiography (ECG) processing. Predictive performance of PRTs and their dynamic recalibration through HRB integration will be evaluated within the ACRIBiS cohort consisting of 5250 prospectively recruited patients at 15 German academic cardiology departments with 12-month follow-up. The potential of visualising these risks to improve patient education will also be assessed and supported by the development of a self-assessment app.</p><p><strong>Discussion: </strong>The ACRIBiS project presents an innovative concept to harmonize clinical data documentation and integrate ECG data, ultimately facilitating personalized risk assessment to improve patient empowerment and prognosis. Importantly, the consensus-based documentation and interoperability specifications developed will support the standardisation of routine patient data collection at the national and international levels, while the ACRIBiS cohort dataset will be available for broad secondary use.</p><p><strong>Trial registration: </strong>The study is registered at the German study registry (DRKS): #DRKS00034792.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 5","pages":"1084-1093"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450505/pdf/","citationCount":"0","resultStr":"{\"title\":\"The 'Advancing Cardiovascular Risk Identification with Structured Clinical Documentation and Biosignal Derived Phenotypes Synthesis' project: conceptual design, project planning, and first implementation experiences.\",\"authors\":\"Dominik Felbel, Merten Prüser, Constanze Schmidt, Björn Schreiweis, Nicolai Spicher, Wolfgang Rottbauer, Julian Varghese, Andreas Zietzer, Stefan Störk, Christoph Dieterich, Dagmar Krefting, Eimo Martens, Martin Sedlmayr, Dario Bongiovanni, Christoph B Olivier, Hendrik Lapp, Hannes H J G Schmidt, Julius L Katzmann, Felix Nensa, Norbert Frey, Gudrun S Ulrich-Merzenich, Carina A Peter, Peter Heuschmann, Udo Bavendiek, Sven Zenker\",\"doi\":\"10.1093/ehjdh/ztaf075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Personalized risk assessment tools (PRTs) are recommended by cardiovascular guidelines to tailor prevention, diagnosis, and treatment. However, PRT implementation in clinical routine is poor. ACRIBiS (Advancing Cardiovascular Risk Identification with Structured Clinical Documentation and Biosignal Derived Phenotypes Synthesis) aims to establish interoperable infrastructures for standardized documentation of routine data and integration of high-resolution biosignals (HRBs) enabling data-based risk assessment.</p><p><strong>Methods and results: </strong>Established cardiovascular risk scores were selected by their predictive performance and served as basis for building a core cardiovascular dataset with risk-relevant clinical routine information. Data items not yet represented in the Medical Informatics Inititative (MII) Core Dataset (CDS) FHIR profiles will be added to an extension module 'Cardiology' allowing for maximum interoperability. HRB integration will be implemented at each site through a modular infrastructure for electrocardiography (ECG) processing. Predictive performance of PRTs and their dynamic recalibration through HRB integration will be evaluated within the ACRIBiS cohort consisting of 5250 prospectively recruited patients at 15 German academic cardiology departments with 12-month follow-up. The potential of visualising these risks to improve patient education will also be assessed and supported by the development of a self-assessment app.</p><p><strong>Discussion: </strong>The ACRIBiS project presents an innovative concept to harmonize clinical data documentation and integrate ECG data, ultimately facilitating personalized risk assessment to improve patient empowerment and prognosis. Importantly, the consensus-based documentation and interoperability specifications developed will support the standardisation of routine patient data collection at the national and international levels, while the ACRIBiS cohort dataset will be available for broad secondary use.</p><p><strong>Trial registration: </strong>The study is registered at the German study registry (DRKS): #DRKS00034792.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":\"6 5\",\"pages\":\"1084-1093\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450505/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztaf075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:心血管指南推荐使用个性化风险评估工具(prt)来定制预防、诊断和治疗。然而,PRT在临床常规中的实施情况较差。ACRIBiS(通过结构化临床文件和生物信号衍生表型合成推进心血管风险识别)旨在建立可互操作的基础设施,用于常规数据的标准化记录和高分辨率生物信号(HRBs)的集成,从而实现基于数据的风险评估。方法与结果:根据已建立的心血管风险评分的预测性能进行选择,并作为构建心血管核心数据集的基础,其中包含与风险相关的临床常规信息。尚未在医学信息学倡议(MII)核心数据集(CDS) FHIR配置文件中表示的数据项将被添加到扩展模块“Cardiology”中,以实现最大的互操作性。HRB集成将通过心电图(ECG)处理的模块化基础设施在每个站点实施。prt的预测性能及其通过HRB整合的动态再校准将在由15个德国学术心脏病科的5250名前瞻性招募患者组成的ACRIBiS队列中进行评估,随访12个月。通过自我评估应用程序的开发,还将评估和支持将这些风险可视化以改善患者教育的潜力。讨论:ACRIBiS项目提出了一个创新的概念,以协调临床数据记录和整合ECG数据,最终促进个性化风险评估,以改善患者赋权和预后。重要的是,基于共识的文件和互操作性规范将支持国家和国际层面常规患者数据收集的标准化,而ACRIBiS队列数据集将可用于广泛的二次使用。试验注册:该研究在德国研究注册中心(DRKS)注册:#DRKS00034792。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The 'Advancing Cardiovascular Risk Identification with Structured Clinical Documentation and Biosignal Derived Phenotypes Synthesis' project: conceptual design, project planning, and first implementation experiences.

The 'Advancing Cardiovascular Risk Identification with Structured Clinical Documentation and Biosignal Derived Phenotypes Synthesis' project: conceptual design, project planning, and first implementation experiences.

The 'Advancing Cardiovascular Risk Identification with Structured Clinical Documentation and Biosignal Derived Phenotypes Synthesis' project: conceptual design, project planning, and first implementation experiences.

The 'Advancing Cardiovascular Risk Identification with Structured Clinical Documentation and Biosignal Derived Phenotypes Synthesis' project: conceptual design, project planning, and first implementation experiences.

Aims: Personalized risk assessment tools (PRTs) are recommended by cardiovascular guidelines to tailor prevention, diagnosis, and treatment. However, PRT implementation in clinical routine is poor. ACRIBiS (Advancing Cardiovascular Risk Identification with Structured Clinical Documentation and Biosignal Derived Phenotypes Synthesis) aims to establish interoperable infrastructures for standardized documentation of routine data and integration of high-resolution biosignals (HRBs) enabling data-based risk assessment.

Methods and results: Established cardiovascular risk scores were selected by their predictive performance and served as basis for building a core cardiovascular dataset with risk-relevant clinical routine information. Data items not yet represented in the Medical Informatics Inititative (MII) Core Dataset (CDS) FHIR profiles will be added to an extension module 'Cardiology' allowing for maximum interoperability. HRB integration will be implemented at each site through a modular infrastructure for electrocardiography (ECG) processing. Predictive performance of PRTs and their dynamic recalibration through HRB integration will be evaluated within the ACRIBiS cohort consisting of 5250 prospectively recruited patients at 15 German academic cardiology departments with 12-month follow-up. The potential of visualising these risks to improve patient education will also be assessed and supported by the development of a self-assessment app.

Discussion: The ACRIBiS project presents an innovative concept to harmonize clinical data documentation and integrate ECG data, ultimately facilitating personalized risk assessment to improve patient empowerment and prognosis. Importantly, the consensus-based documentation and interoperability specifications developed will support the standardisation of routine patient data collection at the national and international levels, while the ACRIBiS cohort dataset will be available for broad secondary use.

Trial registration: The study is registered at the German study registry (DRKS): #DRKS00034792.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信