{"title":"一种新型、无电缆、基于补丁和人工智能增强的心电监测系统的性能和安全性:比较研究。","authors":"Owain Thomas, Rikard Linnér, Alain Dardashti","doi":"10.1093/ehjdh/ztaf059","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>ECG monitoring is often required during critical phases of illness. To evaluate the role of modern technology and advanced analytical algorithms artificial intelligence compared with standard-of care, we undertook a prospective, head-to-head comparison of a novel, cable-free, patch-based, and AI-enhanced electrocardiography system (CardioSenseSystem) with standard of care (SOC) ECG monitoring. Patients who had undergone cardiac surgery at a large university hospital (Skåne University Hospital, Sweden) were simultaneously monitored by both systems, and alarms and monitoring interruptions were recorded.</p><p><strong>Methods and results: </strong>Forty-nine patients were recruited. The CardioSenseSystem system demonstrated significantly higher sensitivity, correctly detecting 364 critical red alarms vs. 12 for SOC (<i>P</i> < 0.0001), and lower rates of high priority false alarms (0.3% vs. 40%; <i>P</i> < 0.0001). Monitoring interruptions were markedly reduced (114 s/day vs. 584 s/day; <i>P</i> < 0.0001). Handling time per patient day was significantly shorter (256 s vs. 880 s). The CardioSenseSystem system also reduced alarm fatigue, with fewer disturbances per patient per hour (0.03 vs. 0.11; <i>P</i> < 0.0001).</p><p><strong>Conclusion: </strong>The CardioSenseSystem system delivered significant advantages over conventional ECG monitoring in post-cardiac surgery patients. Its high sensitivity, reduced false alarms, fewer monitoring interruptions, and decreased handling time suggest that it may enhance patient outcomes and clinical efficiency, warranting broader application in acute-care settings.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 5","pages":"888-896"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450504/pdf/","citationCount":"0","resultStr":"{\"title\":\"Performance and safety of a novel, cable-free, patch-based, and AI-enhanced ECG monitoring system: a comparative study.\",\"authors\":\"Owain Thomas, Rikard Linnér, Alain Dardashti\",\"doi\":\"10.1093/ehjdh/ztaf059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>ECG monitoring is often required during critical phases of illness. To evaluate the role of modern technology and advanced analytical algorithms artificial intelligence compared with standard-of care, we undertook a prospective, head-to-head comparison of a novel, cable-free, patch-based, and AI-enhanced electrocardiography system (CardioSenseSystem) with standard of care (SOC) ECG monitoring. Patients who had undergone cardiac surgery at a large university hospital (Skåne University Hospital, Sweden) were simultaneously monitored by both systems, and alarms and monitoring interruptions were recorded.</p><p><strong>Methods and results: </strong>Forty-nine patients were recruited. The CardioSenseSystem system demonstrated significantly higher sensitivity, correctly detecting 364 critical red alarms vs. 12 for SOC (<i>P</i> < 0.0001), and lower rates of high priority false alarms (0.3% vs. 40%; <i>P</i> < 0.0001). Monitoring interruptions were markedly reduced (114 s/day vs. 584 s/day; <i>P</i> < 0.0001). Handling time per patient day was significantly shorter (256 s vs. 880 s). The CardioSenseSystem system also reduced alarm fatigue, with fewer disturbances per patient per hour (0.03 vs. 0.11; <i>P</i> < 0.0001).</p><p><strong>Conclusion: </strong>The CardioSenseSystem system delivered significant advantages over conventional ECG monitoring in post-cardiac surgery patients. Its high sensitivity, reduced false alarms, fewer monitoring interruptions, and decreased handling time suggest that it may enhance patient outcomes and clinical efficiency, warranting broader application in acute-care settings.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":\"6 5\",\"pages\":\"888-896\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12450504/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztaf059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
目的:在疾病的关键阶段经常需要进行心电监护。为了评估现代技术和先进的分析算法人工智能与标准护理相比的作用,我们对一种新型的、无电缆的、基于补丁的、人工智能增强的心电图系统(cardiosensessystem)与标准护理(SOC)心电图监测进行了前瞻性的、正面的比较。在一家大型大学医院(瑞典skamatne大学医院)接受心脏手术的患者同时接受两个系统的监测,并记录报警和监测中断情况。方法与结果:纳入49例患者。CardioSenseSystem系统显示出更高的灵敏度,正确检测到364个关键红色警报,而SOC为12个(P < 0.0001),高优先级假警报率较低(0.3%对40%;P < 0.0001)。监测中断明显减少(114秒/天vs. 584秒/天;P < 0.0001)。每个病人每天的处理时间显著缩短(256秒vs 880秒)。CardioSenseSystem系统也减少了报警疲劳,每位患者每小时的干扰更少(0.03 vs. 0.11; P < 0.0001)。结论:CardioSenseSystem系统在心脏手术后患者中比传统心电图监测具有显著优势。它的高灵敏度、减少误报、更少的监测中断和更短的处理时间表明,它可以提高患者的预后和临床效率,保证在急性护理环境中更广泛的应用。
Performance and safety of a novel, cable-free, patch-based, and AI-enhanced ECG monitoring system: a comparative study.
Aims: ECG monitoring is often required during critical phases of illness. To evaluate the role of modern technology and advanced analytical algorithms artificial intelligence compared with standard-of care, we undertook a prospective, head-to-head comparison of a novel, cable-free, patch-based, and AI-enhanced electrocardiography system (CardioSenseSystem) with standard of care (SOC) ECG monitoring. Patients who had undergone cardiac surgery at a large university hospital (Skåne University Hospital, Sweden) were simultaneously monitored by both systems, and alarms and monitoring interruptions were recorded.
Methods and results: Forty-nine patients were recruited. The CardioSenseSystem system demonstrated significantly higher sensitivity, correctly detecting 364 critical red alarms vs. 12 for SOC (P < 0.0001), and lower rates of high priority false alarms (0.3% vs. 40%; P < 0.0001). Monitoring interruptions were markedly reduced (114 s/day vs. 584 s/day; P < 0.0001). Handling time per patient day was significantly shorter (256 s vs. 880 s). The CardioSenseSystem system also reduced alarm fatigue, with fewer disturbances per patient per hour (0.03 vs. 0.11; P < 0.0001).
Conclusion: The CardioSenseSystem system delivered significant advantages over conventional ECG monitoring in post-cardiac surgery patients. Its high sensitivity, reduced false alarms, fewer monitoring interruptions, and decreased handling time suggest that it may enhance patient outcomes and clinical efficiency, warranting broader application in acute-care settings.