Sagar Karmakar, Amit Samadder, Joydev Chattopadhyay
{"title":"在嘈杂环境中研究引爆及其可预测性:评估时间和物种响应相关性的影响。","authors":"Sagar Karmakar, Amit Samadder, Joydev Chattopadhyay","doi":"10.1086/737131","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractUnderstanding and identifying factors influencing the likelihood of sudden transitions in ecological systems is a significant area of scientific research. Environmental fluctuations are particularly important, as they can trigger these transitions before reaching the system's condition to a deterministic tipping point. While there has been much focus on noise-induced tipping due to uncorrelated environmental noise, the impact of correlated noise on multispecies systems has been relatively overlooked. Specifically, studies have neglected the impact of correlations between species responses to environmental changes and a system's susceptibility to tipping. This study examines various two-species ecological models representing different interaction types in noisy environments. We reaffirm that elevated positive temporal autocorrelations in environmental fluctuations aggravate the chance of tipping. Conversely, our key findings suggest that elevated positive correlations in species responses generally delay the onset of tipping, except when the system dynamics is solely driven by positive interspecific interactions. The correlation of species responses is also critical in determining the reliability of early warning signals for predicting sudden ecological changes. Our findings highlight the importance of considering the similarity between species' responses to environmental variability, which significantly influences the likelihood and detectability of dramatic ecological transitions.</p>","PeriodicalId":50800,"journal":{"name":"American Naturalist","volume":"206 4","pages":"E63-E77"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating Tipping and Its Predictability in Noisy Environments: Evaluating the Impact of Temporal and Species Response Correlation.\",\"authors\":\"Sagar Karmakar, Amit Samadder, Joydev Chattopadhyay\",\"doi\":\"10.1086/737131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractUnderstanding and identifying factors influencing the likelihood of sudden transitions in ecological systems is a significant area of scientific research. Environmental fluctuations are particularly important, as they can trigger these transitions before reaching the system's condition to a deterministic tipping point. While there has been much focus on noise-induced tipping due to uncorrelated environmental noise, the impact of correlated noise on multispecies systems has been relatively overlooked. Specifically, studies have neglected the impact of correlations between species responses to environmental changes and a system's susceptibility to tipping. This study examines various two-species ecological models representing different interaction types in noisy environments. We reaffirm that elevated positive temporal autocorrelations in environmental fluctuations aggravate the chance of tipping. Conversely, our key findings suggest that elevated positive correlations in species responses generally delay the onset of tipping, except when the system dynamics is solely driven by positive interspecific interactions. The correlation of species responses is also critical in determining the reliability of early warning signals for predicting sudden ecological changes. Our findings highlight the importance of considering the similarity between species' responses to environmental variability, which significantly influences the likelihood and detectability of dramatic ecological transitions.</p>\",\"PeriodicalId\":50800,\"journal\":{\"name\":\"American Naturalist\",\"volume\":\"206 4\",\"pages\":\"E63-E77\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Naturalist\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1086/737131\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Naturalist","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/737131","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Investigating Tipping and Its Predictability in Noisy Environments: Evaluating the Impact of Temporal and Species Response Correlation.
AbstractUnderstanding and identifying factors influencing the likelihood of sudden transitions in ecological systems is a significant area of scientific research. Environmental fluctuations are particularly important, as they can trigger these transitions before reaching the system's condition to a deterministic tipping point. While there has been much focus on noise-induced tipping due to uncorrelated environmental noise, the impact of correlated noise on multispecies systems has been relatively overlooked. Specifically, studies have neglected the impact of correlations between species responses to environmental changes and a system's susceptibility to tipping. This study examines various two-species ecological models representing different interaction types in noisy environments. We reaffirm that elevated positive temporal autocorrelations in environmental fluctuations aggravate the chance of tipping. Conversely, our key findings suggest that elevated positive correlations in species responses generally delay the onset of tipping, except when the system dynamics is solely driven by positive interspecific interactions. The correlation of species responses is also critical in determining the reliability of early warning signals for predicting sudden ecological changes. Our findings highlight the importance of considering the similarity between species' responses to environmental variability, which significantly influences the likelihood and detectability of dramatic ecological transitions.
期刊介绍:
Since its inception in 1867, The American Naturalist has maintained its position as one of the world''s premier peer-reviewed publications in ecology, evolution, and behavior research. Its goals are to publish articles that are of broad interest to the readership, pose new and significant problems, introduce novel subjects, develop conceptual unification, and change the way people think. AmNat emphasizes sophisticated methodologies and innovative theoretical syntheses—all in an effort to advance the knowledge of organic evolution and other broad biological principles.