Seung-Weon Lim, Eunghee Kim, Hong-Gee Kim, Seung-Hak Baek
{"title":"机器学习辅助预测唇腭裂患者未来正颌手术需求的准确性。","authors":"Seung-Weon Lim, Eunghee Kim, Hong-Gee Kim, Seung-Hak Baek","doi":"10.4041/kjod25.030","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the accuracy of machine learning (ML)-assisted prediction of the need for orthognathic surgery (OGS) in patients with cleft lip and palate (CLP).</p><p><strong>Methods: </strong>This study included 245 patients with CLP whose lateral cephalograms were available at pre-adolescence (T0; mean age, 8.45 years) and young adulthood (T1; mean age: 18.37 years). At T1, the patients were classified into the surgery group based on two criteria: (1) satisfying at least three of the following four conditions: ANB < -3°, Wits appraisal < -5 mm, APDI > 90°, and AB-MP < 60° and (2) undergoing presurgical orthodontic treatment or having undergone OGS. A total of 25.3% (n = 62) of patients were assigned to the surgery group, while 74.7% (n = 183) were assigned to the non-surgery group. Further, 80% and 20% of each group were used as training/validation and test sets, respectively. After 37 cephalometric variables and two cleft-related variables were measured, support vector machine (SVM) and feature importance analysis (FIA) with Shapley additive explanation were used to determine the prediction accuracy and predictors at T0.</p><p><strong>Results: </strong>SVM demonstrated area under curve 0.84, accuracy 83.7%, sensitivity 83.3%, and specificity 83.8%. FIA revealed 10 predictors: A to N-perpendicular, L1 to A-Pog, Pog to N-perpendicular, L1 to Lower-occlusal plane, Cleft type, U1 to Upper-occlusal plane, IMPA, gonial angle, anteroposterior facial height ratio, and ANB with accumulated importance of 64.51%.</p><p><strong>Conclusions: </strong>The ML algorithm used in this study may support clinical decision-making in identifying candidates for future OGS at 8 years of age.</p>","PeriodicalId":51260,"journal":{"name":"Korean Journal of Orthodontics","volume":"55 5","pages":"365-379"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460019/pdf/","citationCount":"0","resultStr":"{\"title\":\"Accuracy of machine learning-assisted prediction of the future need for orthognathic surgery in patients with cleft lip and palate.\",\"authors\":\"Seung-Weon Lim, Eunghee Kim, Hong-Gee Kim, Seung-Hak Baek\",\"doi\":\"10.4041/kjod25.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To investigate the accuracy of machine learning (ML)-assisted prediction of the need for orthognathic surgery (OGS) in patients with cleft lip and palate (CLP).</p><p><strong>Methods: </strong>This study included 245 patients with CLP whose lateral cephalograms were available at pre-adolescence (T0; mean age, 8.45 years) and young adulthood (T1; mean age: 18.37 years). At T1, the patients were classified into the surgery group based on two criteria: (1) satisfying at least three of the following four conditions: ANB < -3°, Wits appraisal < -5 mm, APDI > 90°, and AB-MP < 60° and (2) undergoing presurgical orthodontic treatment or having undergone OGS. A total of 25.3% (n = 62) of patients were assigned to the surgery group, while 74.7% (n = 183) were assigned to the non-surgery group. Further, 80% and 20% of each group were used as training/validation and test sets, respectively. After 37 cephalometric variables and two cleft-related variables were measured, support vector machine (SVM) and feature importance analysis (FIA) with Shapley additive explanation were used to determine the prediction accuracy and predictors at T0.</p><p><strong>Results: </strong>SVM demonstrated area under curve 0.84, accuracy 83.7%, sensitivity 83.3%, and specificity 83.8%. FIA revealed 10 predictors: A to N-perpendicular, L1 to A-Pog, Pog to N-perpendicular, L1 to Lower-occlusal plane, Cleft type, U1 to Upper-occlusal plane, IMPA, gonial angle, anteroposterior facial height ratio, and ANB with accumulated importance of 64.51%.</p><p><strong>Conclusions: </strong>The ML algorithm used in this study may support clinical decision-making in identifying candidates for future OGS at 8 years of age.</p>\",\"PeriodicalId\":51260,\"journal\":{\"name\":\"Korean Journal of Orthodontics\",\"volume\":\"55 5\",\"pages\":\"365-379\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460019/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Orthodontics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4041/kjod25.030\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Orthodontics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4041/kjod25.030","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Accuracy of machine learning-assisted prediction of the future need for orthognathic surgery in patients with cleft lip and palate.
Objective: To investigate the accuracy of machine learning (ML)-assisted prediction of the need for orthognathic surgery (OGS) in patients with cleft lip and palate (CLP).
Methods: This study included 245 patients with CLP whose lateral cephalograms were available at pre-adolescence (T0; mean age, 8.45 years) and young adulthood (T1; mean age: 18.37 years). At T1, the patients were classified into the surgery group based on two criteria: (1) satisfying at least three of the following four conditions: ANB < -3°, Wits appraisal < -5 mm, APDI > 90°, and AB-MP < 60° and (2) undergoing presurgical orthodontic treatment or having undergone OGS. A total of 25.3% (n = 62) of patients were assigned to the surgery group, while 74.7% (n = 183) were assigned to the non-surgery group. Further, 80% and 20% of each group were used as training/validation and test sets, respectively. After 37 cephalometric variables and two cleft-related variables were measured, support vector machine (SVM) and feature importance analysis (FIA) with Shapley additive explanation were used to determine the prediction accuracy and predictors at T0.
Results: SVM demonstrated area under curve 0.84, accuracy 83.7%, sensitivity 83.3%, and specificity 83.8%. FIA revealed 10 predictors: A to N-perpendicular, L1 to A-Pog, Pog to N-perpendicular, L1 to Lower-occlusal plane, Cleft type, U1 to Upper-occlusal plane, IMPA, gonial angle, anteroposterior facial height ratio, and ANB with accumulated importance of 64.51%.
Conclusions: The ML algorithm used in this study may support clinical decision-making in identifying candidates for future OGS at 8 years of age.
期刊介绍:
The Korean Journal of Orthodontics (KJO) is an international, open access, peer reviewed journal published in January, March, May, July, September, and November each year. It was first launched in 1970 and, as the official scientific publication of Korean Association of Orthodontists, KJO aims to publish high quality clinical and scientific original research papers in all areas related to orthodontics and dentofacial orthopedics. Specifically, its interest focuses on evidence-based investigations of contemporary diagnostic procedures and treatment techniques, expanding to significant clinical reports of diverse treatment approaches.
The scope of KJO covers all areas of orthodontics and dentofacial orthopedics including successful diagnostic procedures and treatment planning, growth and development of the face and its clinical implications, appliance designs, biomechanics, TMJ disorders and adult treatment. Specifically, its latest interest focuses on skeletal anchorage devices, orthodontic appliance and biomaterials, 3 dimensional imaging techniques utilized for dentofacial diagnosis and treatment planning, and orthognathic surgery to correct skeletal disharmony in association of orthodontic treatment.