Roberta Fusco, Vincenza Granata, Mauro Mattace Raso, Igino Simonetti, Paolo Vallone, Davide Pupo, Filippo Tovecci, Maria Assunta Daniela Iasevoli, Francesca Maio, Paola Gargiulo, Giuditta Giannotti, Paolo Pariante, Saverio Simonelli, Gerardo Ferrara, Claudio Siani, Raimondo Di Giacomo, Sergio Venanzio Setola, Antonella Petrillo
{"title":"放射组学结合机器和深度学习分析t2期和动脉期t1期磁共振成像对乳腺癌转移性腋窝淋巴结的无创检测。","authors":"Roberta Fusco, Vincenza Granata, Mauro Mattace Raso, Igino Simonetti, Paolo Vallone, Davide Pupo, Filippo Tovecci, Maria Assunta Daniela Iasevoli, Francesca Maio, Paola Gargiulo, Giuditta Giannotti, Paolo Pariante, Saverio Simonelli, Gerardo Ferrara, Claudio Siani, Raimondo Di Giacomo, Sergio Venanzio Setola, Antonella Petrillo","doi":"10.1007/s11547-025-02090-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To compare the diagnostic performance of radiomic features extracted from T2-weighted and arterial-phase T1-weighted MRI sequences using univariate, machine and deep learning analysis and to assess their effectiveness in predicting axillary lymph node (ALN) metastasis in breast cancer patients.</p><p><strong>Methods: </strong>We retrospectively analyzed MRI data from 100 breast cancer patients, comprising 52 metastatic and 103 non-metastatic lymph nodes. Radiomic features were extracted from T2-weighted and subtracted arterial-phase T1-weighted images. Feature normalization and selection were performed. Various machine learning classifiers, including logistic regression, gradient boosting, random forest, and neural networks, were trained and evaluated. Diagnostic performance was assessed using metrics such as area under the curve (AUC), sensitivity, specificity, and accuracy.</p><p><strong>Results: </strong>T2-weighted imaging provided strong performance in multivariate modeling, with the neural network achieving the highest AUC (0.978) and accuracy (91.1%), showing statistically significant differences over models. The stepwise logistic regression model also showed competitive results (AUC = 0.796; accuracy = 73.3%). In contrast, arterial-phase T1-weighted imaging features performed better when analyzed individually, with the best univariate AUC reaching 0.787. When multivariate modeling was applied to arterial-phase features, the best-performing logistic regression model achieved an AUC of 0.853 and accuracy of 77.8%.</p><p><strong>Conclusion: </strong>Radiomic analysis of T2-weighted MRI, particularly through deep learning models like neural networks, demonstrated the highest overall diagnostic performance for predicting metastatic ALNs. In contrast, arterial-phase T1-weighted features showed better results in univariate analysis. These findings support the integration of radiomic features, especially from T2-weighted sequences, into multivariate models to enhance noninvasive preoperative assessment.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiomics integrated with machine and deep learning analysis of T2-weighted and arterial-phase T1-weighted Magnetic Resonance Imaging for non-invasive detection of metastatic axillary lymph nodes in breast cancer.\",\"authors\":\"Roberta Fusco, Vincenza Granata, Mauro Mattace Raso, Igino Simonetti, Paolo Vallone, Davide Pupo, Filippo Tovecci, Maria Assunta Daniela Iasevoli, Francesca Maio, Paola Gargiulo, Giuditta Giannotti, Paolo Pariante, Saverio Simonelli, Gerardo Ferrara, Claudio Siani, Raimondo Di Giacomo, Sergio Venanzio Setola, Antonella Petrillo\",\"doi\":\"10.1007/s11547-025-02090-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To compare the diagnostic performance of radiomic features extracted from T2-weighted and arterial-phase T1-weighted MRI sequences using univariate, machine and deep learning analysis and to assess their effectiveness in predicting axillary lymph node (ALN) metastasis in breast cancer patients.</p><p><strong>Methods: </strong>We retrospectively analyzed MRI data from 100 breast cancer patients, comprising 52 metastatic and 103 non-metastatic lymph nodes. Radiomic features were extracted from T2-weighted and subtracted arterial-phase T1-weighted images. Feature normalization and selection were performed. Various machine learning classifiers, including logistic regression, gradient boosting, random forest, and neural networks, were trained and evaluated. Diagnostic performance was assessed using metrics such as area under the curve (AUC), sensitivity, specificity, and accuracy.</p><p><strong>Results: </strong>T2-weighted imaging provided strong performance in multivariate modeling, with the neural network achieving the highest AUC (0.978) and accuracy (91.1%), showing statistically significant differences over models. The stepwise logistic regression model also showed competitive results (AUC = 0.796; accuracy = 73.3%). In contrast, arterial-phase T1-weighted imaging features performed better when analyzed individually, with the best univariate AUC reaching 0.787. When multivariate modeling was applied to arterial-phase features, the best-performing logistic regression model achieved an AUC of 0.853 and accuracy of 77.8%.</p><p><strong>Conclusion: </strong>Radiomic analysis of T2-weighted MRI, particularly through deep learning models like neural networks, demonstrated the highest overall diagnostic performance for predicting metastatic ALNs. In contrast, arterial-phase T1-weighted features showed better results in univariate analysis. These findings support the integration of radiomic features, especially from T2-weighted sequences, into multivariate models to enhance noninvasive preoperative assessment.</p>\",\"PeriodicalId\":20817,\"journal\":{\"name\":\"Radiologia Medica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiologia Medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11547-025-02090-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-025-02090-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Radiomics integrated with machine and deep learning analysis of T2-weighted and arterial-phase T1-weighted Magnetic Resonance Imaging for non-invasive detection of metastatic axillary lymph nodes in breast cancer.
Purpose: To compare the diagnostic performance of radiomic features extracted from T2-weighted and arterial-phase T1-weighted MRI sequences using univariate, machine and deep learning analysis and to assess their effectiveness in predicting axillary lymph node (ALN) metastasis in breast cancer patients.
Methods: We retrospectively analyzed MRI data from 100 breast cancer patients, comprising 52 metastatic and 103 non-metastatic lymph nodes. Radiomic features were extracted from T2-weighted and subtracted arterial-phase T1-weighted images. Feature normalization and selection were performed. Various machine learning classifiers, including logistic regression, gradient boosting, random forest, and neural networks, were trained and evaluated. Diagnostic performance was assessed using metrics such as area under the curve (AUC), sensitivity, specificity, and accuracy.
Results: T2-weighted imaging provided strong performance in multivariate modeling, with the neural network achieving the highest AUC (0.978) and accuracy (91.1%), showing statistically significant differences over models. The stepwise logistic regression model also showed competitive results (AUC = 0.796; accuracy = 73.3%). In contrast, arterial-phase T1-weighted imaging features performed better when analyzed individually, with the best univariate AUC reaching 0.787. When multivariate modeling was applied to arterial-phase features, the best-performing logistic regression model achieved an AUC of 0.853 and accuracy of 77.8%.
Conclusion: Radiomic analysis of T2-weighted MRI, particularly through deep learning models like neural networks, demonstrated the highest overall diagnostic performance for predicting metastatic ALNs. In contrast, arterial-phase T1-weighted features showed better results in univariate analysis. These findings support the integration of radiomic features, especially from T2-weighted sequences, into multivariate models to enhance noninvasive preoperative assessment.
期刊介绍:
Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.