高精度,全矢量光模式求解波导通过四阶导数物理通知神经网络。

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2025-09-08 DOI:10.1364/OE.571156
Weijie Xu, Qing Zhong, Ming Wang, Zeyong Wei, Zhanshan Wang, Xinbin Cheng
{"title":"高精度,全矢量光模式求解波导通过四阶导数物理通知神经网络。","authors":"Weijie Xu, Qing Zhong, Ming Wang, Zeyong Wei, Zhanshan Wang, Xinbin Cheng","doi":"10.1364/OE.571156","DOIUrl":null,"url":null,"abstract":"<p><p>Optical mode solving plays a critical role in photonic device design, yet conventional numerical methods face inherent challenges, including limited geometric adaptability and computational demands of large-scale matrix eigenvalue problems. Physics-informed neural networks (PINNs) tightly couple neural networks with physical principles, showcasing significant capabilities in photonics for addressing both forward computation and inverse design challenges. This work introduces fourth-order derivative PINNs (4DPINNs) for full-vector waveguide eigenmode solutions. The 4DPINNs simultaneously resolve tangential electric and magnetic field components, enabling direct mode analysis and optical efficiency computations. The network systematically integrates boundary conditions, initialization protocols, and a fourth-order derivative loss function derived from Maxwell's equations. We first validate 4DPINNs by determining electric field distributions for predefined propagation constants, comparing fixed-point initialization strategies with random-point approaches. The solutions achieve maximum absolute errors below -12 dB and minimum absolute errors below -50 dB relative to analytical benchmarks. Through adaptive learning rate optimization, we further demonstrate simultaneous prediction of mode propagation constants and field distributions. The 4DPINNs constrain propagation constant errors to under 10<sup>-4</sup>, keeping maximum field distribution absolute errors below -12 dB compared to analytical solutions. Our work demonstrates a highly accurate and broadly applicable waveguide eigensolver, offering substantial value for semiconductor devices and photonic integrated circuits.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 18","pages":"38317-38328"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High precision, full-vector optical mode solving in waveguides via fourth-order derivative physics-informed neural networks.\",\"authors\":\"Weijie Xu, Qing Zhong, Ming Wang, Zeyong Wei, Zhanshan Wang, Xinbin Cheng\",\"doi\":\"10.1364/OE.571156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optical mode solving plays a critical role in photonic device design, yet conventional numerical methods face inherent challenges, including limited geometric adaptability and computational demands of large-scale matrix eigenvalue problems. Physics-informed neural networks (PINNs) tightly couple neural networks with physical principles, showcasing significant capabilities in photonics for addressing both forward computation and inverse design challenges. This work introduces fourth-order derivative PINNs (4DPINNs) for full-vector waveguide eigenmode solutions. The 4DPINNs simultaneously resolve tangential electric and magnetic field components, enabling direct mode analysis and optical efficiency computations. The network systematically integrates boundary conditions, initialization protocols, and a fourth-order derivative loss function derived from Maxwell's equations. We first validate 4DPINNs by determining electric field distributions for predefined propagation constants, comparing fixed-point initialization strategies with random-point approaches. The solutions achieve maximum absolute errors below -12 dB and minimum absolute errors below -50 dB relative to analytical benchmarks. Through adaptive learning rate optimization, we further demonstrate simultaneous prediction of mode propagation constants and field distributions. The 4DPINNs constrain propagation constant errors to under 10<sup>-4</sup>, keeping maximum field distribution absolute errors below -12 dB compared to analytical solutions. Our work demonstrates a highly accurate and broadly applicable waveguide eigensolver, offering substantial value for semiconductor devices and photonic integrated circuits.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"33 18\",\"pages\":\"38317-38328\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.571156\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.571156","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

光学模式求解在光子器件设计中起着至关重要的作用,但传统的数值方法面临着固有的挑战,包括有限的几何适应性和大规模矩阵特征值问题的计算需求。物理信息神经网络(pinn)将神经网络与物理原理紧密结合,在光子学中展示了解决正向计算和逆向设计挑战的重要能力。本文介绍了全矢量波导特征模解的四阶导数pin (4dpin)。4dpinn同时解析切向电场和磁场分量,实现直接模式分析和光效率计算。该网络系统地集成了边界条件,初始化协议和从麦克斯韦方程导出的四阶导数损失函数。我们首先通过确定预定义传播常数的电场分布来验证4dpinn,比较定点初始化策略和随机点方法。相对于分析基准,该解决方案的最大绝对误差低于-12 dB,最小绝对误差低于-50 dB。通过自适应学习率优化,我们进一步证明了模式传播常数和场分布的同时预测。与解析解相比,4dpinn将传播常数误差限制在10-4以下,使最大场分布绝对误差保持在-12 dB以下。我们的工作证明了一个高精度和广泛适用的波导特征求解器,为半导体器件和光子集成电路提供了重要的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High precision, full-vector optical mode solving in waveguides via fourth-order derivative physics-informed neural networks.

Optical mode solving plays a critical role in photonic device design, yet conventional numerical methods face inherent challenges, including limited geometric adaptability and computational demands of large-scale matrix eigenvalue problems. Physics-informed neural networks (PINNs) tightly couple neural networks with physical principles, showcasing significant capabilities in photonics for addressing both forward computation and inverse design challenges. This work introduces fourth-order derivative PINNs (4DPINNs) for full-vector waveguide eigenmode solutions. The 4DPINNs simultaneously resolve tangential electric and magnetic field components, enabling direct mode analysis and optical efficiency computations. The network systematically integrates boundary conditions, initialization protocols, and a fourth-order derivative loss function derived from Maxwell's equations. We first validate 4DPINNs by determining electric field distributions for predefined propagation constants, comparing fixed-point initialization strategies with random-point approaches. The solutions achieve maximum absolute errors below -12 dB and minimum absolute errors below -50 dB relative to analytical benchmarks. Through adaptive learning rate optimization, we further demonstrate simultaneous prediction of mode propagation constants and field distributions. The 4DPINNs constrain propagation constant errors to under 10-4, keeping maximum field distribution absolute errors below -12 dB compared to analytical solutions. Our work demonstrates a highly accurate and broadly applicable waveguide eigensolver, offering substantial value for semiconductor devices and photonic integrated circuits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信