光学各向异性介质的广义Jones-Mueller微积分。

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2025-09-08 DOI:10.1364/OE.565077
Luo Wang, Mingjie Xiao, Haiyang Zhang, Changming Zhao
{"title":"光学各向异性介质的广义Jones-Mueller微积分。","authors":"Luo Wang, Mingjie Xiao, Haiyang Zhang, Changming Zhao","doi":"10.1364/OE.565077","DOIUrl":null,"url":null,"abstract":"<p><p>3-D matrix calculus plays a critical role in describing 3-D polarized transformations. However, existing two 3-D calculi, generalized Jones and Mueller matrix calculus (GJM and GMM), remain flawed and incomplete. First, the global connection between two matrices has not been theoretically explored and established, which results in their independence and inability to form a unified framework (similar to 2-D Jones-Mueller framework). Second, existing GJM calculus models the 3-D interaction with anisotropic media as a paraxial-like system constrained by specific <i>S</i><i>U</i>(3) rotations, neglecting the influence of vectorial light path and defining the differential GJM (dGJM) as inherent and fixed. In this article, we first introduce a Lorentz-like algebra to establish a double-covering homomorphism between <i>S</i><i>L</i>(3,<i>C</i>) and the Lorentz-like group <b>LLG</b>, which enables global and bi-directional mapping between GJM and GMM. Then, we propose a pure-matrix approach covering the vectorial light path to describe the 3-D anisotropic interaction, which enables polarization modeling along arbitrary light paths. The proposed theories further refine the framework of 3-D polarization optics and can be the foundation of a variety of non-paraxial polarization applications.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 18","pages":"37826-37839"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Jones-Mueller calculus for optical anisotropic media.\",\"authors\":\"Luo Wang, Mingjie Xiao, Haiyang Zhang, Changming Zhao\",\"doi\":\"10.1364/OE.565077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>3-D matrix calculus plays a critical role in describing 3-D polarized transformations. However, existing two 3-D calculi, generalized Jones and Mueller matrix calculus (GJM and GMM), remain flawed and incomplete. First, the global connection between two matrices has not been theoretically explored and established, which results in their independence and inability to form a unified framework (similar to 2-D Jones-Mueller framework). Second, existing GJM calculus models the 3-D interaction with anisotropic media as a paraxial-like system constrained by specific <i>S</i><i>U</i>(3) rotations, neglecting the influence of vectorial light path and defining the differential GJM (dGJM) as inherent and fixed. In this article, we first introduce a Lorentz-like algebra to establish a double-covering homomorphism between <i>S</i><i>L</i>(3,<i>C</i>) and the Lorentz-like group <b>LLG</b>, which enables global and bi-directional mapping between GJM and GMM. Then, we propose a pure-matrix approach covering the vectorial light path to describe the 3-D anisotropic interaction, which enables polarization modeling along arbitrary light paths. The proposed theories further refine the framework of 3-D polarization optics and can be the foundation of a variety of non-paraxial polarization applications.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"33 18\",\"pages\":\"37826-37839\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.565077\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.565077","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

三维矩阵演算在描述三维极化变换中起着重要的作用。然而,现有的两种三维演算——广义Jones和Mueller矩阵演算(GJM和GMM)仍然存在缺陷和不完整。首先,没有从理论上探索和建立两个矩阵之间的全局联系,导致它们的独立性,无法形成一个统一的框架(类似于二维Jones-Mueller框架)。其次,现有的GJM演算将与各向异性介质的三维相互作用建模为受特定SU(3)旋转约束的类傍轴系统,忽略了矢量光路的影响,并将微分GJM (dGJM)定义为固有的和固定的。在本文中,我们首先引入一个类洛伦兹代数来建立SL(3,C)与类洛伦兹群LLG之间的双覆盖同态,从而实现GJM与GMM之间的全局和双向映射。然后,我们提出了一种覆盖矢量光路的纯矩阵方法来描述三维各向异性相互作用,使偏振沿任意光路建模成为可能。所提出的理论进一步完善了三维偏振光学的框架,可以成为各种非近轴偏振应用的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Jones-Mueller calculus for optical anisotropic media.

3-D matrix calculus plays a critical role in describing 3-D polarized transformations. However, existing two 3-D calculi, generalized Jones and Mueller matrix calculus (GJM and GMM), remain flawed and incomplete. First, the global connection between two matrices has not been theoretically explored and established, which results in their independence and inability to form a unified framework (similar to 2-D Jones-Mueller framework). Second, existing GJM calculus models the 3-D interaction with anisotropic media as a paraxial-like system constrained by specific SU(3) rotations, neglecting the influence of vectorial light path and defining the differential GJM (dGJM) as inherent and fixed. In this article, we first introduce a Lorentz-like algebra to establish a double-covering homomorphism between SL(3,C) and the Lorentz-like group LLG, which enables global and bi-directional mapping between GJM and GMM. Then, we propose a pure-matrix approach covering the vectorial light path to describe the 3-D anisotropic interaction, which enables polarization modeling along arbitrary light paths. The proposed theories further refine the framework of 3-D polarization optics and can be the foundation of a variety of non-paraxial polarization applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信