加速吸器分割使谷物-白粉病病理系统的快速基因功能分析成为可能。

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Stefanie Lück, Deniz Demirhan, Laura Agsten, Ahmed Raza Khan, Oksana Maier, Dimitar K Douchkov
{"title":"加速吸器分割使谷物-白粉病病理系统的快速基因功能分析成为可能。","authors":"Stefanie Lück, Deniz Demirhan, Laura Agsten, Ahmed Raza Khan, Oksana Maier, Dimitar K Douchkov","doi":"10.1094/MPMI-06-25-0067-TA","DOIUrl":null,"url":null,"abstract":"<p><p>Reliable, high-throughput quantification of early fungal infection events is crucial for gene-function studies, but it remains labor-intensive. We report an open-source pipeline that automates the detection of β-glucuronidase (GUS-stained) epidermal cells and the intracellular haustoria formed by powdery mildew on barley and wheat leaves. Whole-slide images are captured with a commercial scanner, focus-projected, tiled, and analyzed by deep-learning models trained on expertly annotated datasets. A <i>You Only Look Once</i> (<i>YOLO</i>) network identifies GUS-positive cells, while a companion segmentation model pinpoints haustoria within each cell; automatic focus-layer selection preserves fine structural detail. The workflow runs in minutes per slide on a single workstation and maintains near-perfect agreement with manual counts in both barley and wheat, demonstrating robust cross-species transferability. By delivering single-cell readouts with minimal user input, the pipeline enables rapid functional validation screens and supports large-scale phenotyping of cereal-powdery mildew interactions.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated Haustoria Segmentation Enables Rapid Gene Function Analysis in Cereal-Powdery Mildew Pathosystems.\",\"authors\":\"Stefanie Lück, Deniz Demirhan, Laura Agsten, Ahmed Raza Khan, Oksana Maier, Dimitar K Douchkov\",\"doi\":\"10.1094/MPMI-06-25-0067-TA\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reliable, high-throughput quantification of early fungal infection events is crucial for gene-function studies, but it remains labor-intensive. We report an open-source pipeline that automates the detection of β-glucuronidase (GUS-stained) epidermal cells and the intracellular haustoria formed by powdery mildew on barley and wheat leaves. Whole-slide images are captured with a commercial scanner, focus-projected, tiled, and analyzed by deep-learning models trained on expertly annotated datasets. A <i>You Only Look Once</i> (<i>YOLO</i>) network identifies GUS-positive cells, while a companion segmentation model pinpoints haustoria within each cell; automatic focus-layer selection preserves fine structural detail. The workflow runs in minutes per slide on a single workstation and maintains near-perfect agreement with manual counts in both barley and wheat, demonstrating robust cross-species transferability. By delivering single-cell readouts with minimal user input, the pipeline enables rapid functional validation screens and supports large-scale phenotyping of cereal-powdery mildew interactions.</p>\",\"PeriodicalId\":19009,\"journal\":{\"name\":\"Molecular Plant-microbe Interactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Plant-microbe Interactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1094/MPMI-06-25-0067-TA\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant-microbe Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1094/MPMI-06-25-0067-TA","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

可靠的、高通量的早期真菌感染事件定量对基因功能研究至关重要,但它仍然是劳动密集型的。我们报道了一个开源的流水线,可以自动检测大麦和小麦叶片上由白粉病形成的表皮细胞和细胞内吸器。整张幻灯片图像由商用扫描仪捕获,焦点投影,平铺,并通过深度学习模型对专业注释数据集进行分析。You Only Look Once (YOLO)网络识别gus阳性细胞,而伴随的分割模型精确定位每个细胞内的吸器;自动对焦层选择保留了精细的结构细节。该工作流程在单个工作站上运行每张幻灯片只需几分钟,并与大麦和小麦的人工计数保持近乎完美的一致,显示出强大的跨物种可转移性。通过以最少的用户输入提供单细胞读数,该管道实现了快速的功能验证屏幕,并支持谷物-白粉病相互作用的大规模表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerated Haustoria Segmentation Enables Rapid Gene Function Analysis in Cereal-Powdery Mildew Pathosystems.

Reliable, high-throughput quantification of early fungal infection events is crucial for gene-function studies, but it remains labor-intensive. We report an open-source pipeline that automates the detection of β-glucuronidase (GUS-stained) epidermal cells and the intracellular haustoria formed by powdery mildew on barley and wheat leaves. Whole-slide images are captured with a commercial scanner, focus-projected, tiled, and analyzed by deep-learning models trained on expertly annotated datasets. A You Only Look Once (YOLO) network identifies GUS-positive cells, while a companion segmentation model pinpoints haustoria within each cell; automatic focus-layer selection preserves fine structural detail. The workflow runs in minutes per slide on a single workstation and maintains near-perfect agreement with manual counts in both barley and wheat, demonstrating robust cross-species transferability. By delivering single-cell readouts with minimal user input, the pipeline enables rapid functional validation screens and supports large-scale phenotyping of cereal-powdery mildew interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Plant-microbe Interactions
Molecular Plant-microbe Interactions 生物-生化与分子生物学
CiteScore
7.00
自引率
2.90%
发文量
250
审稿时长
3 months
期刊介绍: Molecular Plant-Microbe Interactions® (MPMI) publishes fundamental and advanced applied research on the genetics, genomics, molecular biology, biochemistry, and biophysics of pathological, symbiotic, and associative interactions of microbes, insects, nematodes, or parasitic plants with plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信