ADPO:自动微分辅助参数优化。

IF 2.8 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Rong Chen, Mark Sale, Alex Mazur, Michael Tomashevskiy, Shuhua Hu, James Craig, Mike Dunlavey, Robert Leary, Keith Nieforth
{"title":"ADPO:自动微分辅助参数优化。","authors":"Rong Chen, Mark Sale, Alex Mazur, Michael Tomashevskiy, Shuhua Hu, James Craig, Mike Dunlavey, Robert Leary, Keith Nieforth","doi":"10.1007/s10928-025-09997-0","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic differentiation (AD), a key method for accurately and efficiently computing derivatives in modern machine learning, is now implemented in Phoenix® NLME™ 8.6 for the first time and applied to the first-order conditional estimation extended least squares (FOCE ELS), Laplacian, and adaptive Gaussian quadrature (AGQ) algorithms. We name the AD implementation as 'automatic-differentiation-assisted parametric optimization' (ADPO), which can be enabled by checking the 'Fast Optimization' option. We present in detail how ADPO is implemented in the frequently used FOCE ELS algorithm, and analyze its performance from the benchmarks based on four PK/PD models. We show both ADPO and traditional FOCE ELS which uses gradients obtained from finite difference (FD) are reasonably accurate and robust, while the main advantage of ADPO being that it considerably reduces computation time no matter what ODE solvers are used: in general ADPO reduces the total run time by around 20% to 50% compared to traditional FOCE ELS. In a case for the realistic voriconazole model using 'auto-detect' ODE solver, 95% reduction in the total run time is observed.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 5","pages":"53"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ADPO: automatic-differentiation-assisted parametric optimization.\",\"authors\":\"Rong Chen, Mark Sale, Alex Mazur, Michael Tomashevskiy, Shuhua Hu, James Craig, Mike Dunlavey, Robert Leary, Keith Nieforth\",\"doi\":\"10.1007/s10928-025-09997-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automatic differentiation (AD), a key method for accurately and efficiently computing derivatives in modern machine learning, is now implemented in Phoenix® NLME™ 8.6 for the first time and applied to the first-order conditional estimation extended least squares (FOCE ELS), Laplacian, and adaptive Gaussian quadrature (AGQ) algorithms. We name the AD implementation as 'automatic-differentiation-assisted parametric optimization' (ADPO), which can be enabled by checking the 'Fast Optimization' option. We present in detail how ADPO is implemented in the frequently used FOCE ELS algorithm, and analyze its performance from the benchmarks based on four PK/PD models. We show both ADPO and traditional FOCE ELS which uses gradients obtained from finite difference (FD) are reasonably accurate and robust, while the main advantage of ADPO being that it considerably reduces computation time no matter what ODE solvers are used: in general ADPO reduces the total run time by around 20% to 50% compared to traditional FOCE ELS. In a case for the realistic voriconazole model using 'auto-detect' ODE solver, 95% reduction in the total run time is observed.</p>\",\"PeriodicalId\":16851,\"journal\":{\"name\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"volume\":\"52 5\",\"pages\":\"53\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10928-025-09997-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-025-09997-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

自动微分(AD)是现代机器学习中准确有效地计算导数的关键方法,现在首次在Phoenix®NLME™8.6中实现,并应用于一阶条件估计扩展最小二乘(FOCE ELS),拉普拉斯和自适应高斯正交(AGQ)算法。我们将AD的实现命名为“自动微分辅助参数优化”(ADPO),可以通过检查“快速优化”选项来启用。我们详细介绍了ADPO如何在常用的FOCE ELS算法中实现,并基于四种PK/PD模型从基准测试中分析了其性能。我们表明,使用有限差分(FD)获得的梯度的ADPO和传统的FOCE ELS都相当准确和稳健,而ADPO的主要优势在于,无论使用何种ODE求解器,它都大大减少了计算时间:一般来说,与传统的FOCE ELS相比,ADPO将总运行时间减少了约20%至50%。在使用“自动检测”ODE求解器的现实voriconazole模型中,观察到总运行时间减少了95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ADPO: automatic-differentiation-assisted parametric optimization.

Automatic differentiation (AD), a key method for accurately and efficiently computing derivatives in modern machine learning, is now implemented in Phoenix® NLME™ 8.6 for the first time and applied to the first-order conditional estimation extended least squares (FOCE ELS), Laplacian, and adaptive Gaussian quadrature (AGQ) algorithms. We name the AD implementation as 'automatic-differentiation-assisted parametric optimization' (ADPO), which can be enabled by checking the 'Fast Optimization' option. We present in detail how ADPO is implemented in the frequently used FOCE ELS algorithm, and analyze its performance from the benchmarks based on four PK/PD models. We show both ADPO and traditional FOCE ELS which uses gradients obtained from finite difference (FD) are reasonably accurate and robust, while the main advantage of ADPO being that it considerably reduces computation time no matter what ODE solvers are used: in general ADPO reduces the total run time by around 20% to 50% compared to traditional FOCE ELS. In a case for the realistic voriconazole model using 'auto-detect' ODE solver, 95% reduction in the total run time is observed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信