Miguel Palma-Cobo, Victor Toribio, Joaquín Morales, Soraya López-Martín, Carlos Enrich, Albert Lu, María Yáñez-Mó
{"title":"全基因组CRISPR/Cas9筛选鉴定COMMANDER回收复合体在EV摄取中的关键作用","authors":"Miguel Palma-Cobo, Victor Toribio, Joaquín Morales, Soraya López-Martín, Carlos Enrich, Albert Lu, María Yáñez-Mó","doi":"10.1002/jev2.70166","DOIUrl":null,"url":null,"abstract":"<p>Extracellular vesicles (EVs) hold immense potential in therapeutic delivery, warranting a comprehensive investigation of the mechanisms that regulate their uptake by target cells. To identify key molecular regulators of EV internalization, we conducted a genome-wide CRISPR (GWC) screen aimed to pinpoint candidate genes that influence EV uptake. We employed a GWC library spanning the entire human genome in K562 cells. 3.6 × 10<sup>12</sup> EVs isolated from the SKMEL147 human melanoma cell line were labelled with Alexa633-C5-Maleimide and incubated for 2 h with 500 × 10⁶ K562 cells, providing a 2000× coverage of the library. The top 5% of high and low fluorescence populations were sorted. Next-generation sequencing (NGS) was performed to quantify sgRNA enrichment in the sorted populations compared to the unsorted control. Remarkably, among other genes, several members of the COMMANDER complex emerged as significant hits in our screen. We validated the hits in knockout (KO) cell lines of both K562 and HeLa cells using EVs derived either from melanoma or breast cancer cell lines. Kinetic follow-up of EV cargo, including surface or luminal proteins, suggests that the COMMANDER complex plays a pivotal role in the early stages of EV uptake but also in the final fate of EV components in the target cell.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 9","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://isevjournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70166","citationCount":"0","resultStr":"{\"title\":\"Genome-Wide CRISPR/Cas9 Screening Identifies the COMMANDER Recycling Complex as a Key Player in EV Uptake\",\"authors\":\"Miguel Palma-Cobo, Victor Toribio, Joaquín Morales, Soraya López-Martín, Carlos Enrich, Albert Lu, María Yáñez-Mó\",\"doi\":\"10.1002/jev2.70166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extracellular vesicles (EVs) hold immense potential in therapeutic delivery, warranting a comprehensive investigation of the mechanisms that regulate their uptake by target cells. To identify key molecular regulators of EV internalization, we conducted a genome-wide CRISPR (GWC) screen aimed to pinpoint candidate genes that influence EV uptake. We employed a GWC library spanning the entire human genome in K562 cells. 3.6 × 10<sup>12</sup> EVs isolated from the SKMEL147 human melanoma cell line were labelled with Alexa633-C5-Maleimide and incubated for 2 h with 500 × 10⁶ K562 cells, providing a 2000× coverage of the library. The top 5% of high and low fluorescence populations were sorted. Next-generation sequencing (NGS) was performed to quantify sgRNA enrichment in the sorted populations compared to the unsorted control. Remarkably, among other genes, several members of the COMMANDER complex emerged as significant hits in our screen. We validated the hits in knockout (KO) cell lines of both K562 and HeLa cells using EVs derived either from melanoma or breast cancer cell lines. Kinetic follow-up of EV cargo, including surface or luminal proteins, suggests that the COMMANDER complex plays a pivotal role in the early stages of EV uptake but also in the final fate of EV components in the target cell.</p>\",\"PeriodicalId\":15811,\"journal\":{\"name\":\"Journal of Extracellular Vesicles\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://isevjournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70166\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Extracellular Vesicles\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jev2.70166\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jev2.70166","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Genome-Wide CRISPR/Cas9 Screening Identifies the COMMANDER Recycling Complex as a Key Player in EV Uptake
Extracellular vesicles (EVs) hold immense potential in therapeutic delivery, warranting a comprehensive investigation of the mechanisms that regulate their uptake by target cells. To identify key molecular regulators of EV internalization, we conducted a genome-wide CRISPR (GWC) screen aimed to pinpoint candidate genes that influence EV uptake. We employed a GWC library spanning the entire human genome in K562 cells. 3.6 × 1012 EVs isolated from the SKMEL147 human melanoma cell line were labelled with Alexa633-C5-Maleimide and incubated for 2 h with 500 × 10⁶ K562 cells, providing a 2000× coverage of the library. The top 5% of high and low fluorescence populations were sorted. Next-generation sequencing (NGS) was performed to quantify sgRNA enrichment in the sorted populations compared to the unsorted control. Remarkably, among other genes, several members of the COMMANDER complex emerged as significant hits in our screen. We validated the hits in knockout (KO) cell lines of both K562 and HeLa cells using EVs derived either from melanoma or breast cancer cell lines. Kinetic follow-up of EV cargo, including surface or luminal proteins, suggests that the COMMANDER complex plays a pivotal role in the early stages of EV uptake but also in the final fate of EV components in the target cell.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.