线粒体Ca2+在肿瘤生长和代谢中的作用。

IF 4 2区 生物学 Q2 CELL BIOLOGY
Jillian S. Weissenrieder, J. Kevin Foskett
{"title":"线粒体Ca2+在肿瘤生长和代谢中的作用。","authors":"Jillian S. Weissenrieder,&nbsp;J. Kevin Foskett","doi":"10.1002/jcp.70093","DOIUrl":null,"url":null,"abstract":"<p>Cancer is a leading cause of death in developed countries, despite many breakthroughs in targeted small molecule and immunotherapeutic interventions. A deeper understanding of the characteristics and processes that underlie malignancy will enable us to develop more effective therapeutic options to improve patient outcomes. One particular area of interest is in cancer cell metabolism. Even as early as the 1920s, Otto Warburg recognized dysregulated metabolism in cancerous cells. Altered metabolism may provide targetable nutrient dependencies for further clinical development, either by nutrient restriction or pathway inhibition. More recently, researchers have observed an increasingly strong linkage between altered mitochondrial Ca<sup>2+</sup> homeostasis and tumor cell metabolism, with strong implications for therapeutic targeting. In this review, we summarize the literature surrounding mitochondrial Ca<sup>2+</sup> homeostasis, metabolism, and cancer, as well as providing a discussion of the potential for mitochondrial Ca<sup>2+</sup> modulation as an anticancer therapeutic modality.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12455693/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial Ca2+ in Cancer Growth and Metabolism\",\"authors\":\"Jillian S. Weissenrieder,&nbsp;J. Kevin Foskett\",\"doi\":\"10.1002/jcp.70093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cancer is a leading cause of death in developed countries, despite many breakthroughs in targeted small molecule and immunotherapeutic interventions. A deeper understanding of the characteristics and processes that underlie malignancy will enable us to develop more effective therapeutic options to improve patient outcomes. One particular area of interest is in cancer cell metabolism. Even as early as the 1920s, Otto Warburg recognized dysregulated metabolism in cancerous cells. Altered metabolism may provide targetable nutrient dependencies for further clinical development, either by nutrient restriction or pathway inhibition. More recently, researchers have observed an increasingly strong linkage between altered mitochondrial Ca<sup>2+</sup> homeostasis and tumor cell metabolism, with strong implications for therapeutic targeting. In this review, we summarize the literature surrounding mitochondrial Ca<sup>2+</sup> homeostasis, metabolism, and cancer, as well as providing a discussion of the potential for mitochondrial Ca<sup>2+</sup> modulation as an anticancer therapeutic modality.</p>\",\"PeriodicalId\":15220,\"journal\":{\"name\":\"Journal of Cellular Physiology\",\"volume\":\"240 9\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12455693/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70093\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70093","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

癌症是发达国家的主要死亡原因,尽管在靶向小分子和免疫治疗干预方面取得了许多突破。更深入地了解恶性肿瘤的特征和过程将使我们能够制定更有效的治疗方案,以改善患者的预后。一个特别感兴趣的领域是癌细胞代谢。早在20世纪20年代,奥托·沃伯格就发现了癌细胞代谢失调。通过营养限制或通路抑制,代谢改变可能为进一步的临床发展提供可靶向的营养依赖性。最近,研究人员观察到线粒体Ca2+稳态改变与肿瘤细胞代谢之间的联系越来越强,这对治疗靶向具有重要意义。在这篇综述中,我们总结了有关线粒体Ca2+稳态、代谢和癌症的文献,并讨论了线粒体Ca2+调节作为抗癌治疗方式的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mitochondrial Ca2+ in Cancer Growth and Metabolism

Mitochondrial Ca2+ in Cancer Growth and Metabolism

Cancer is a leading cause of death in developed countries, despite many breakthroughs in targeted small molecule and immunotherapeutic interventions. A deeper understanding of the characteristics and processes that underlie malignancy will enable us to develop more effective therapeutic options to improve patient outcomes. One particular area of interest is in cancer cell metabolism. Even as early as the 1920s, Otto Warburg recognized dysregulated metabolism in cancerous cells. Altered metabolism may provide targetable nutrient dependencies for further clinical development, either by nutrient restriction or pathway inhibition. More recently, researchers have observed an increasingly strong linkage between altered mitochondrial Ca2+ homeostasis and tumor cell metabolism, with strong implications for therapeutic targeting. In this review, we summarize the literature surrounding mitochondrial Ca2+ homeostasis, metabolism, and cancer, as well as providing a discussion of the potential for mitochondrial Ca2+ modulation as an anticancer therapeutic modality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
256
审稿时长
1 months
期刊介绍: The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信