WDR45缺陷缩短了患者来源的iPSCs中多巴胺能神经元的轴突长度。

IF 3.2 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nana Huang, Qianqian Ouyang, Yuxuan Gong, Jingjing Xiang, Qin Zhang, Changshui Chen, Yang Ding, Yu An
{"title":"WDR45缺陷缩短了患者来源的iPSCs中多巴胺能神经元的轴突长度。","authors":"Nana Huang, Qianqian Ouyang, Yuxuan Gong, Jingjing Xiang, Qin Zhang, Changshui Chen, Yang Ding, Yu An","doi":"10.1093/hmg/ddaf135","DOIUrl":null,"url":null,"abstract":"<p><p>β-propeller protein-associated neurodegeneration (BPAN) is characterized by global developmental delay, intellectual disability, and epileptic encephalopathies in infancy or early childhood caused by WDR45/WIPI4 gene mutations. WDR45 depletion disrupted autophagy, leading to iron accumulation in the brain and contributing to neuronal apoptosis. The impact on neuron performance remains unknown. Our previous study established the iPSC cell line derived from a girl patient with a de novo variant c.344 + 5G > T in WDR45 (FDHPIi001). This study demonstrated that this intron 6 mutation impairs RNA splicing, resulting in a 28 bp insertion and nonsense-mediated mRNA decay (NMD) of truncated WDR45. Upon differentiating the iPSCs into dopaminergic neurons, we observed significantly shorter neuronal axons using high-intensity imaging analysis. Additionally, there was significant ferritin accumulation in the induced neurons but not in the iPSCs from the same patient. This research has elucidated the pathogenicity of a non-canonical splice site mutation in WDR45 and has provided deeper insights into the pathologies of neurodegenerative diseases caused by WDR45 defects.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"1836-1843"},"PeriodicalIF":3.2000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WDR45 deficiency shortens axon length in dopaminergic neurons from patient-derived iPSCs.\",\"authors\":\"Nana Huang, Qianqian Ouyang, Yuxuan Gong, Jingjing Xiang, Qin Zhang, Changshui Chen, Yang Ding, Yu An\",\"doi\":\"10.1093/hmg/ddaf135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>β-propeller protein-associated neurodegeneration (BPAN) is characterized by global developmental delay, intellectual disability, and epileptic encephalopathies in infancy or early childhood caused by WDR45/WIPI4 gene mutations. WDR45 depletion disrupted autophagy, leading to iron accumulation in the brain and contributing to neuronal apoptosis. The impact on neuron performance remains unknown. Our previous study established the iPSC cell line derived from a girl patient with a de novo variant c.344 + 5G > T in WDR45 (FDHPIi001). This study demonstrated that this intron 6 mutation impairs RNA splicing, resulting in a 28 bp insertion and nonsense-mediated mRNA decay (NMD) of truncated WDR45. Upon differentiating the iPSCs into dopaminergic neurons, we observed significantly shorter neuronal axons using high-intensity imaging analysis. Additionally, there was significant ferritin accumulation in the induced neurons but not in the iPSCs from the same patient. This research has elucidated the pathogenicity of a non-canonical splice site mutation in WDR45 and has provided deeper insights into the pathologies of neurodegenerative diseases caused by WDR45 defects.</p>\",\"PeriodicalId\":13070,\"journal\":{\"name\":\"Human molecular genetics\",\"volume\":\" \",\"pages\":\"1836-1843\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human molecular genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/hmg/ddaf135\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf135","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

β-螺旋桨蛋白相关神经变性(BPAN)的特征是由WDR45/WIPI4基因突变引起的婴儿期或幼儿期全面发育迟缓、智力残疾和癫痫性脑病。WDR45耗竭破坏自噬,导致脑内铁积聚并导致神经元凋亡。对神经元性能的影响尚不清楚。我们之前的研究建立了来自一名WDR45 (FDHPIi001)新生变异c.344 + 5G > T的女孩患者的iPSC细胞系。该研究表明,该内含子6突变破坏RNA剪接,导致截断的WDR45插入28bp和无义介导的mRNA衰变(NMD)。在诱导多能干细胞分化为多巴胺能神经元后,我们通过高强度成像分析观察到神经元轴突明显缩短。此外,在诱导的神经元中有明显的铁蛋白积累,但在同一患者的iPSCs中没有。本研究阐明了WDR45非规范剪接位点突变的致病性,为WDR45缺陷引起的神经退行性疾病的病理提供了更深入的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WDR45 deficiency shortens axon length in dopaminergic neurons from patient-derived iPSCs.

β-propeller protein-associated neurodegeneration (BPAN) is characterized by global developmental delay, intellectual disability, and epileptic encephalopathies in infancy or early childhood caused by WDR45/WIPI4 gene mutations. WDR45 depletion disrupted autophagy, leading to iron accumulation in the brain and contributing to neuronal apoptosis. The impact on neuron performance remains unknown. Our previous study established the iPSC cell line derived from a girl patient with a de novo variant c.344 + 5G > T in WDR45 (FDHPIi001). This study demonstrated that this intron 6 mutation impairs RNA splicing, resulting in a 28 bp insertion and nonsense-mediated mRNA decay (NMD) of truncated WDR45. Upon differentiating the iPSCs into dopaminergic neurons, we observed significantly shorter neuronal axons using high-intensity imaging analysis. Additionally, there was significant ferritin accumulation in the induced neurons but not in the iPSCs from the same patient. This research has elucidated the pathogenicity of a non-canonical splice site mutation in WDR45 and has provided deeper insights into the pathologies of neurodegenerative diseases caused by WDR45 defects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信