基因表达分析揭示了长聚球菌重金属和产水暴露相关基因。

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Alaa Hassanien, Nisar Ahmed, Borbala Misfud, Hareb M Al-Jabri, Sara Al-Marri, Tasneem Dalgamouni, Maryam Al-Merekhi, Kira Schipper, Imen Saadaoui, Suhur Saeed, Mustapha Aouida
{"title":"基因表达分析揭示了长聚球菌重金属和产水暴露相关基因。","authors":"Alaa Hassanien, Nisar Ahmed, Borbala Misfud, Hareb M Al-Jabri, Sara Al-Marri, Tasneem Dalgamouni, Maryam Al-Merekhi, Kira Schipper, Imen Saadaoui, Suhur Saeed, Mustapha Aouida","doi":"10.1007/s10123-025-00715-x","DOIUrl":null,"url":null,"abstract":"<p><p>Produced water (PW), a major by-product of the petrochemical industry, contains a complex mixture of contaminants that limit its reuse and pose environmental risks if discharged untreated. Numerous treatment technologies have been developed to remediate this water, with bioremediation standing out as one of the most promising novel approaches. One such bioremediation method is through the application of cyanobacteria, which are able to remove pollutants such as heavy metals from produced water, although the mechanism by which the pollutants are removed is still unknown. In this study, a well-characterized cyanobacterium, Synechococcus elongatus, was used as a model organism to establish a proof of concept for identifying genes responsive to PW exposure and heavy metal stress. RNA sequencing was performed to analyze transcriptomic changes in S. elongatus grown in BG-11 (control) and exposed to 3 mg/mL of iron (heavy metal (HM)) or 25% v/v PW in BG-11. Differential expression analysis revealed that 11 and 67 genes were ≥ fivefold upregulated, and 337 and 27 genes were ≥ fivefold downregulated under HM and PW exposure, respectively, compared to the control. Among the over-expressed genes, the plasma membrane transporter, nitrate ABC transporter permease, was identified, suggesting its important role in the bioremediation process of heavy metals from wastewater. These findings provide foundational insights into stress-responsive gene networks in cyanobacteria and inform future bioengineering strategies for enhancing bioremediation capabilities in S. elongatus and related strains.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene expression analysis reveals genes related to heavy metals and produced water exposure in Synechococcus elongatus.\",\"authors\":\"Alaa Hassanien, Nisar Ahmed, Borbala Misfud, Hareb M Al-Jabri, Sara Al-Marri, Tasneem Dalgamouni, Maryam Al-Merekhi, Kira Schipper, Imen Saadaoui, Suhur Saeed, Mustapha Aouida\",\"doi\":\"10.1007/s10123-025-00715-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Produced water (PW), a major by-product of the petrochemical industry, contains a complex mixture of contaminants that limit its reuse and pose environmental risks if discharged untreated. Numerous treatment technologies have been developed to remediate this water, with bioremediation standing out as one of the most promising novel approaches. One such bioremediation method is through the application of cyanobacteria, which are able to remove pollutants such as heavy metals from produced water, although the mechanism by which the pollutants are removed is still unknown. In this study, a well-characterized cyanobacterium, Synechococcus elongatus, was used as a model organism to establish a proof of concept for identifying genes responsive to PW exposure and heavy metal stress. RNA sequencing was performed to analyze transcriptomic changes in S. elongatus grown in BG-11 (control) and exposed to 3 mg/mL of iron (heavy metal (HM)) or 25% v/v PW in BG-11. Differential expression analysis revealed that 11 and 67 genes were ≥ fivefold upregulated, and 337 and 27 genes were ≥ fivefold downregulated under HM and PW exposure, respectively, compared to the control. Among the over-expressed genes, the plasma membrane transporter, nitrate ABC transporter permease, was identified, suggesting its important role in the bioremediation process of heavy metals from wastewater. These findings provide foundational insights into stress-responsive gene networks in cyanobacteria and inform future bioengineering strategies for enhancing bioremediation capabilities in S. elongatus and related strains.</p>\",\"PeriodicalId\":14318,\"journal\":{\"name\":\"International Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10123-025-00715-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-025-00715-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

采出水(PW)是石油化工行业的主要副产品,它含有复杂的污染物混合物,如果未经处理就排放,会限制其再利用,并造成环境风险。已经开发了许多处理技术来修复这些水,生物修复作为最有前途的新方法之一脱颖而出。一种这样的生物修复方法是通过应用蓝藻,它能够从采出水中去除污染物,如重金属,尽管污染物被去除的机制尚不清楚。在本研究中,我们以一种特性良好的蓝藻——长聚球菌(Synechococcus elongatus)作为模型生物,建立了识别PW暴露和重金属胁迫应答基因的概念证明。通过RNA测序分析生长在BG-11(对照)中、暴露于BG-11中3 mg/mL铁(重金属(HM))或25% v/v PW的S. elongatus转录组学变化。差异表达分析显示,与对照相比,HM和PW暴露下,分别有11个和67个基因上调≥5倍,337个和27个基因下调≥5倍。在这些过表达基因中,鉴定出了质膜转运蛋白硝酸盐ABC转运蛋白渗透酶,提示其在废水重金属生物修复过程中发挥重要作用。这些发现为蓝藻的应激反应基因网络提供了基础的见解,并为未来的生物工程策略提供了信息,以增强S. elongatus和相关菌株的生物修复能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gene expression analysis reveals genes related to heavy metals and produced water exposure in Synechococcus elongatus.

Produced water (PW), a major by-product of the petrochemical industry, contains a complex mixture of contaminants that limit its reuse and pose environmental risks if discharged untreated. Numerous treatment technologies have been developed to remediate this water, with bioremediation standing out as one of the most promising novel approaches. One such bioremediation method is through the application of cyanobacteria, which are able to remove pollutants such as heavy metals from produced water, although the mechanism by which the pollutants are removed is still unknown. In this study, a well-characterized cyanobacterium, Synechococcus elongatus, was used as a model organism to establish a proof of concept for identifying genes responsive to PW exposure and heavy metal stress. RNA sequencing was performed to analyze transcriptomic changes in S. elongatus grown in BG-11 (control) and exposed to 3 mg/mL of iron (heavy metal (HM)) or 25% v/v PW in BG-11. Differential expression analysis revealed that 11 and 67 genes were ≥ fivefold upregulated, and 337 and 27 genes were ≥ fivefold downregulated under HM and PW exposure, respectively, compared to the control. Among the over-expressed genes, the plasma membrane transporter, nitrate ABC transporter permease, was identified, suggesting its important role in the bioremediation process of heavy metals from wastewater. These findings provide foundational insights into stress-responsive gene networks in cyanobacteria and inform future bioengineering strategies for enhancing bioremediation capabilities in S. elongatus and related strains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Microbiology
International Microbiology 生物-生物工程与应用微生物
CiteScore
5.50
自引率
3.20%
发文量
67
审稿时长
3 months
期刊介绍: International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials. A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信