FetalDenseNet:多尺度深度学习增强产前超声胎儿解剖平面的早期检测。

IF 1.4 4区 医学 Q3 OBSTETRICS & GYNECOLOGY
Samrat Kumar Dey, Arpita Howlader, Md Shabukta Haider, Tonmoy Saha, Deblina Mazumder Setu, Tania Islam, Umme Raihan Siddiqi, Md Mahbubur Rahman
{"title":"FetalDenseNet:多尺度深度学习增强产前超声胎儿解剖平面的早期检测。","authors":"Samrat Kumar Dey, Arpita Howlader, Md Shabukta Haider, Tonmoy Saha, Deblina Mazumder Setu, Tania Islam, Umme Raihan Siddiqi, Md Mahbubur Rahman","doi":"10.1515/jpm-2025-0249","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The study aims to improve the classification of fetal anatomical planes using Deep Learning (DL) methods to enhance the accuracy of fetal ultrasound interpretation.</p><p><strong>Methods: </strong>Five Convolutional Neural Network (CNN) architectures, such as VGG16, ResNet50, InceptionV3, DenseNet169, and MobileNetV2, are evaluated on a large-scale, clinically validated dataset of 12,400 ultrasound images from 1,792 patients. Preprocessing methods, including scaling, normalization, label encoding, and augmentation, are applied to the dataset, and the dataset is split into 80 % for training and 20 % for testing. Each model was fine-tuned and evaluated based on its classification accuracy for comparison.</p><p><strong>Results: </strong>DenseNet169 achieved the highest classification accuracy of 92 % among all the tested models.</p><p><strong>Conclusions: </strong>The study shows that CNN-based models, particularly DenseNet169, significantly improve diagnostic accuracy in fetal ultrasound interpretation. This advancement reduces error rates and provides support for clinical decision-making in prenatal care.</p>","PeriodicalId":16704,"journal":{"name":"Journal of Perinatal Medicine","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FetalDenseNet: multi-scale deep learning for enhanced early detection of fetal anatomical planes in prenatal ultrasound.\",\"authors\":\"Samrat Kumar Dey, Arpita Howlader, Md Shabukta Haider, Tonmoy Saha, Deblina Mazumder Setu, Tania Islam, Umme Raihan Siddiqi, Md Mahbubur Rahman\",\"doi\":\"10.1515/jpm-2025-0249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The study aims to improve the classification of fetal anatomical planes using Deep Learning (DL) methods to enhance the accuracy of fetal ultrasound interpretation.</p><p><strong>Methods: </strong>Five Convolutional Neural Network (CNN) architectures, such as VGG16, ResNet50, InceptionV3, DenseNet169, and MobileNetV2, are evaluated on a large-scale, clinically validated dataset of 12,400 ultrasound images from 1,792 patients. Preprocessing methods, including scaling, normalization, label encoding, and augmentation, are applied to the dataset, and the dataset is split into 80 % for training and 20 % for testing. Each model was fine-tuned and evaluated based on its classification accuracy for comparison.</p><p><strong>Results: </strong>DenseNet169 achieved the highest classification accuracy of 92 % among all the tested models.</p><p><strong>Conclusions: </strong>The study shows that CNN-based models, particularly DenseNet169, significantly improve diagnostic accuracy in fetal ultrasound interpretation. This advancement reduces error rates and provides support for clinical decision-making in prenatal care.</p>\",\"PeriodicalId\":16704,\"journal\":{\"name\":\"Journal of Perinatal Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Perinatal Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/jpm-2025-0249\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Perinatal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jpm-2025-0249","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:利用深度学习(Deep Learning, DL)方法改进胎儿解剖平面的分类,提高胎儿超声判读的准确性。方法:对VGG16、ResNet50、InceptionV3、DenseNet169和MobileNetV2等5种卷积神经网络(CNN)架构在1792例患者的12400张超声图像的大规模临床验证数据集上进行评估。对数据集应用预处理方法,包括缩放、归一化、标签编码和增强,并将数据集分成80 %用于训练和20 %用于测试。每个模型都经过微调,并根据其分类精度进行评估,以便进行比较。结果:在所有测试模型中,DenseNet169的分类准确率最高,达到92 %。结论:本研究表明,基于cnn的模型,特别是DenseNet169,显著提高了胎儿超声解释的诊断准确性。这一进步降低了错误率,并为产前护理的临床决策提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FetalDenseNet: multi-scale deep learning for enhanced early detection of fetal anatomical planes in prenatal ultrasound.

Objectives: The study aims to improve the classification of fetal anatomical planes using Deep Learning (DL) methods to enhance the accuracy of fetal ultrasound interpretation.

Methods: Five Convolutional Neural Network (CNN) architectures, such as VGG16, ResNet50, InceptionV3, DenseNet169, and MobileNetV2, are evaluated on a large-scale, clinically validated dataset of 12,400 ultrasound images from 1,792 patients. Preprocessing methods, including scaling, normalization, label encoding, and augmentation, are applied to the dataset, and the dataset is split into 80 % for training and 20 % for testing. Each model was fine-tuned and evaluated based on its classification accuracy for comparison.

Results: DenseNet169 achieved the highest classification accuracy of 92 % among all the tested models.

Conclusions: The study shows that CNN-based models, particularly DenseNet169, significantly improve diagnostic accuracy in fetal ultrasound interpretation. This advancement reduces error rates and provides support for clinical decision-making in prenatal care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Perinatal Medicine
Journal of Perinatal Medicine 医学-妇产科学
CiteScore
4.40
自引率
8.30%
发文量
183
审稿时长
4-8 weeks
期刊介绍: The Journal of Perinatal Medicine (JPM) is a truly international forum covering the entire field of perinatal medicine. It is an essential news source for all those obstetricians, neonatologists, perinatologists and allied health professionals who wish to keep abreast of progress in perinatal and related research. Ahead-of-print publishing ensures fastest possible knowledge transfer. The Journal provides statements on themes of topical interest as well as information and different views on controversial topics. It also informs about the academic, organisational and political aims and objectives of the World Association of Perinatal Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信