评估一种利用低能量超电荷光电子对抗冠状病毒的新型环境净化系统的有效性。

IF 1.6 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS
Madeeha Afzal , Mark D.P. Willcox , Stephan Praet , Murray Mcdonald , Muhammad Yasir
{"title":"评估一种利用低能量超电荷光电子对抗冠状病毒的新型环境净化系统的有效性。","authors":"Madeeha Afzal ,&nbsp;Mark D.P. Willcox ,&nbsp;Stephan Praet ,&nbsp;Murray Mcdonald ,&nbsp;Muhammad Yasir","doi":"10.1016/j.jviromet.2025.115269","DOIUrl":null,"url":null,"abstract":"<div><div>The COVID-19 pandemic had profound economic and social effects across the globe. The present study evaluated the virus attenuation efficacy of an environmental decontamination system named photon-mediated electron emitter (PMEE) on aerosolized and surface-associated coronavirus. The intensity of hyper-charged photoelectrons emitted by the PMEE were measured over distances of 1–5 m using a photon-detection mapping device. The antiviral efficacy of the PMEE was tested against mouse hepatitis virus (MHV-1) ATCC/VR261. For aerosolised studies, the MHV-1 was aerosolized using an electronic diffuser in an enclosed booth. Virus particles were exposed to PMEE for 10 and 15 min. For surface studies, viruses were dried on steel and laminate surfaces and then exposed to the PMEE from distances of 1 and 5-meters. The antiviral potential of the PMEE was evaluated by culturing MHV-1 in A9 ATCC/CCL 1.4 cells using a plaque assay. PMEE emission strength ranged from 1.44 to 1.86 V inside the booth and 0.83–1.86 V outside. The average size of the generated aerosol particles was 3.0 ± 0.3 µm. After 10 min exposure, the virucidal effects against particles of 2.1 µm, 1.1 µm, and 0.65 µm pore sizes were 74.5 ± 11.1 %, 79 ± 4.9 %, and 96 ± 1.4 % respectively. On surfaces, a 1-minute exposure at 1 m resulted in a 60 ± 0.5 % reduction on steel and 43 ± 2.7 % on laminate. The PMEE-based system effectively reduced the infectivity of MHV-1 both in aerosols and on surfaces, demonstrating strong potential for environmental decontamination applications.</div></div>","PeriodicalId":17663,"journal":{"name":"Journal of virological methods","volume":"339 ","pages":"Article 115269"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the effectiveness of a novel environmental decontamination system utilizing low-energy hyper-charged photoelectrons against coronavirus\",\"authors\":\"Madeeha Afzal ,&nbsp;Mark D.P. Willcox ,&nbsp;Stephan Praet ,&nbsp;Murray Mcdonald ,&nbsp;Muhammad Yasir\",\"doi\":\"10.1016/j.jviromet.2025.115269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The COVID-19 pandemic had profound economic and social effects across the globe. The present study evaluated the virus attenuation efficacy of an environmental decontamination system named photon-mediated electron emitter (PMEE) on aerosolized and surface-associated coronavirus. The intensity of hyper-charged photoelectrons emitted by the PMEE were measured over distances of 1–5 m using a photon-detection mapping device. The antiviral efficacy of the PMEE was tested against mouse hepatitis virus (MHV-1) ATCC/VR261. For aerosolised studies, the MHV-1 was aerosolized using an electronic diffuser in an enclosed booth. Virus particles were exposed to PMEE for 10 and 15 min. For surface studies, viruses were dried on steel and laminate surfaces and then exposed to the PMEE from distances of 1 and 5-meters. The antiviral potential of the PMEE was evaluated by culturing MHV-1 in A9 ATCC/CCL 1.4 cells using a plaque assay. PMEE emission strength ranged from 1.44 to 1.86 V inside the booth and 0.83–1.86 V outside. The average size of the generated aerosol particles was 3.0 ± 0.3 µm. After 10 min exposure, the virucidal effects against particles of 2.1 µm, 1.1 µm, and 0.65 µm pore sizes were 74.5 ± 11.1 %, 79 ± 4.9 %, and 96 ± 1.4 % respectively. On surfaces, a 1-minute exposure at 1 m resulted in a 60 ± 0.5 % reduction on steel and 43 ± 2.7 % on laminate. The PMEE-based system effectively reduced the infectivity of MHV-1 both in aerosols and on surfaces, demonstrating strong potential for environmental decontamination applications.</div></div>\",\"PeriodicalId\":17663,\"journal\":{\"name\":\"Journal of virological methods\",\"volume\":\"339 \",\"pages\":\"Article 115269\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of virological methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166093425001624\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of virological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166093425001624","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

新冠肺炎疫情在全球范围内产生了深刻的经济社会影响。本研究评估了一种名为光子介导电子发射器(PMEE)的环境去污系统对雾化和表面相关冠状病毒的病毒衰减效果。利用光子探测测绘装置测量了PMEE发射的超电荷光电子的强度,距离为1至5m。研究了PMEE对小鼠肝炎病毒(MHV-1) ATCC/VR261的抗病毒作用。对于雾化研究,MHV-1在封闭的隔间中使用电子扩散器雾化。将病毒颗粒暴露在PMEE中10分钟和15分钟。在表面研究中,病毒在钢铁和层压板表面干燥,然后在距离1米和5米的地方暴露在PMEE中。通过斑块实验,在A9 ATCC/CCL 1.4细胞中培养MHV-1,评估PMEE的抗病毒潜力。PMEE发射强度在展台内为1.44 ~ 1.86mV,展台外为0.83 ~ 1.86mV。产生的气溶胶颗粒平均粒径为3.0±0.3µm。暴露10min后,对孔径为2.1µm、1.1µm和0.65µm的颗粒的毒力分别为74.5±11.1%、79±4.9%和96±1.4%。在表面上,在1米处暴露1分钟,钢的磨损减少60±0.5%,层压板的磨损减少43±2.7%。基于pme的系统有效地降低了MHV-1在气溶胶和表面上的传染性,显示出在环境净化应用中的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating the effectiveness of a novel environmental decontamination system utilizing low-energy hyper-charged photoelectrons against coronavirus
The COVID-19 pandemic had profound economic and social effects across the globe. The present study evaluated the virus attenuation efficacy of an environmental decontamination system named photon-mediated electron emitter (PMEE) on aerosolized and surface-associated coronavirus. The intensity of hyper-charged photoelectrons emitted by the PMEE were measured over distances of 1–5 m using a photon-detection mapping device. The antiviral efficacy of the PMEE was tested against mouse hepatitis virus (MHV-1) ATCC/VR261. For aerosolised studies, the MHV-1 was aerosolized using an electronic diffuser in an enclosed booth. Virus particles were exposed to PMEE for 10 and 15 min. For surface studies, viruses were dried on steel and laminate surfaces and then exposed to the PMEE from distances of 1 and 5-meters. The antiviral potential of the PMEE was evaluated by culturing MHV-1 in A9 ATCC/CCL 1.4 cells using a plaque assay. PMEE emission strength ranged from 1.44 to 1.86 V inside the booth and 0.83–1.86 V outside. The average size of the generated aerosol particles was 3.0 ± 0.3 µm. After 10 min exposure, the virucidal effects against particles of 2.1 µm, 1.1 µm, and 0.65 µm pore sizes were 74.5 ± 11.1 %, 79 ± 4.9 %, and 96 ± 1.4 % respectively. On surfaces, a 1-minute exposure at 1 m resulted in a 60 ± 0.5 % reduction on steel and 43 ± 2.7 % on laminate. The PMEE-based system effectively reduced the infectivity of MHV-1 both in aerosols and on surfaces, demonstrating strong potential for environmental decontamination applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
209
审稿时长
41 days
期刊介绍: The Journal of Virological Methods focuses on original, high quality research papers that describe novel and comprehensively tested methods which enhance human, animal, plant, bacterial or environmental virology and prions research and discovery. The methods may include, but not limited to, the study of: Viral components and morphology- Virus isolation, propagation and development of viral vectors- Viral pathogenesis, oncogenesis, vaccines and antivirals- Virus replication, host-pathogen interactions and responses- Virus transmission, prevention, control and treatment- Viral metagenomics and virome- Virus ecology, adaption and evolution- Applied virology such as nanotechnology- Viral diagnosis with novelty and comprehensive evaluation. We seek articles, systematic reviews, meta-analyses and laboratory protocols that include comprehensive technical details with statistical confirmations that provide validations against current best practice, international standards or quality assurance programs and which advance knowledge in virology leading to improved medical, veterinary or agricultural practices and management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信