人工智能在流式细胞术中的应用现状及未来发展方向。

IF 2.7 3区 医学 Q3 MEDICAL LABORATORY TECHNOLOGY
Alice Yue, Ryan R. Brinkman, Veronica Nash, Fabian Junker, Goce Bogdanoski, Anagha Divekar, Aaron Tyznik, Josef Spidlen, Wolfgang Kern, Jordi Petriz, Kaska Wloka, Kamila Czechowska
{"title":"人工智能在流式细胞术中的应用现状及未来发展方向。","authors":"Alice Yue,&nbsp;Ryan R. Brinkman,&nbsp;Veronica Nash,&nbsp;Fabian Junker,&nbsp;Goce Bogdanoski,&nbsp;Anagha Divekar,&nbsp;Aaron Tyznik,&nbsp;Josef Spidlen,&nbsp;Wolfgang Kern,&nbsp;Jordi Petriz,&nbsp;Kaska Wloka,&nbsp;Kamila Czechowska","doi":"10.1002/cyto.b.22255","DOIUrl":null,"url":null,"abstract":"<p>Flow cytometry is a powerful tool for analyzing diverse cellular properties, making it essential in immunology research, clinical trials, and diagnostics. Integrating artificial intelligence (AI) into flow cytometry has the potential to enhance various aspects of assay development and application, including reagent selection, instrument standardization, panel and assay design, data analysis, quality controls, and knowledge dissemination. This paper provides a review of current AI applications in flow cytometry and explores the potential future directions for AI integration in the field.</p>","PeriodicalId":10883,"journal":{"name":"Cytometry Part B: Clinical Cytometry","volume":"108 5","pages":"404-420"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI in flow cytometry: Current applications and future directions\",\"authors\":\"Alice Yue,&nbsp;Ryan R. Brinkman,&nbsp;Veronica Nash,&nbsp;Fabian Junker,&nbsp;Goce Bogdanoski,&nbsp;Anagha Divekar,&nbsp;Aaron Tyznik,&nbsp;Josef Spidlen,&nbsp;Wolfgang Kern,&nbsp;Jordi Petriz,&nbsp;Kaska Wloka,&nbsp;Kamila Czechowska\",\"doi\":\"10.1002/cyto.b.22255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flow cytometry is a powerful tool for analyzing diverse cellular properties, making it essential in immunology research, clinical trials, and diagnostics. Integrating artificial intelligence (AI) into flow cytometry has the potential to enhance various aspects of assay development and application, including reagent selection, instrument standardization, panel and assay design, data analysis, quality controls, and knowledge dissemination. This paper provides a review of current AI applications in flow cytometry and explores the potential future directions for AI integration in the field.</p>\",\"PeriodicalId\":10883,\"journal\":{\"name\":\"Cytometry Part B: Clinical Cytometry\",\"volume\":\"108 5\",\"pages\":\"404-420\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytometry Part B: Clinical Cytometry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cyto.b.22255\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part B: Clinical Cytometry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.b.22255","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

流式细胞术是一种分析多种细胞特性的强大工具,在免疫学研究、临床试验和诊断中至关重要。将人工智能(AI)集成到流式细胞术中有可能增强检测开发和应用的各个方面,包括试剂选择、仪器标准化、面板和检测设计、数据分析、质量控制和知识传播。本文综述了人工智能在流式细胞术中的应用现状,并探讨了人工智能在该领域集成的潜在未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AI in flow cytometry: Current applications and future directions

AI in flow cytometry: Current applications and future directions

Flow cytometry is a powerful tool for analyzing diverse cellular properties, making it essential in immunology research, clinical trials, and diagnostics. Integrating artificial intelligence (AI) into flow cytometry has the potential to enhance various aspects of assay development and application, including reagent selection, instrument standardization, panel and assay design, data analysis, quality controls, and knowledge dissemination. This paper provides a review of current AI applications in flow cytometry and explores the potential future directions for AI integration in the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
32.40%
发文量
51
审稿时长
>12 weeks
期刊介绍: Cytometry Part B: Clinical Cytometry features original research reports, in-depth reviews and special issues that directly relate to and palpably impact clinical flow, mass and image-based cytometry. These may include clinical and translational investigations important in the diagnostic, prognostic and therapeutic management of patients. Thus, we welcome research papers from various disciplines related [but not limited to] hematopathologists, hematologists, immunologists and cell biologists with clinically relevant and innovative studies investigating individual-cell analytics and/or separations. In addition to the types of papers indicated above, we also welcome Letters to the Editor, describing case reports or important medical or technical topics relevant to our readership without the length and depth of a full original report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信