恶臭假单胞菌ATCC 17536对嘧啶核糖核苷补救性代谢的调控

IF 1.6 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Sara Fatima, Thomas P West
{"title":"恶臭假单胞菌ATCC 17536对嘧啶核糖核苷补救性代谢的调控","authors":"Sara Fatima, Thomas P West","doi":"10.1139/cjm-2025-0161","DOIUrl":null,"url":null,"abstract":"<p><p>Pyrimidine base and ribonucleoside salvage metabolism was investigated in Pseudomonas putida ATCC 17536 cells. In ATCC 17536 cell extracts, the pyrimidine ribonucleoside salvage enzymes nucleoside hydrolase and cytosine deaminase activities were measurable while uridine phosphorylase activity was not. Carbon and nitrogen sources influenced the levels of the salvage pathway enzyme activities in P. putida ATCC 17536. Catabolite repression by a glucose metabolite of nucleoside hydrolase and cytosine deaminase synthesis in ATCC 17536 cells compared to cells grown on the carbon source succinate or ribose was observed while a nitrogen metabolite appeared to be controlling pyrimidine salvage enzyme synthesis. When glucose was the carbon source, ATCC 17536 cells grown on uracil or 5-methylcytosine as a nitrogen source caused at least a 5-fold increase in hydrolase and deaminase synthesis relative to their activities in ammonium sulfate-grown cells. In succinate-grown ATCC 17536 cells, thymine or 5-methylcytosine as a nitrogen catabolite produced at least double the hydrolase or deaminase activity relative to either activity in ammonium sulfate-grown cells. Overall, the pyrimidine base and ribonucleoside salvage enzymes in P. putida ATCC 17536 biovar B cells were regulated by the carbon or nitrogen source with pyrimidine salvage metabolism differing in biovar A and B strains.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of Pyrimidine Ribonucleoside Salvage Metabolism in Pseudomonas putida ATCC 17536.\",\"authors\":\"Sara Fatima, Thomas P West\",\"doi\":\"10.1139/cjm-2025-0161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pyrimidine base and ribonucleoside salvage metabolism was investigated in Pseudomonas putida ATCC 17536 cells. In ATCC 17536 cell extracts, the pyrimidine ribonucleoside salvage enzymes nucleoside hydrolase and cytosine deaminase activities were measurable while uridine phosphorylase activity was not. Carbon and nitrogen sources influenced the levels of the salvage pathway enzyme activities in P. putida ATCC 17536. Catabolite repression by a glucose metabolite of nucleoside hydrolase and cytosine deaminase synthesis in ATCC 17536 cells compared to cells grown on the carbon source succinate or ribose was observed while a nitrogen metabolite appeared to be controlling pyrimidine salvage enzyme synthesis. When glucose was the carbon source, ATCC 17536 cells grown on uracil or 5-methylcytosine as a nitrogen source caused at least a 5-fold increase in hydrolase and deaminase synthesis relative to their activities in ammonium sulfate-grown cells. In succinate-grown ATCC 17536 cells, thymine or 5-methylcytosine as a nitrogen catabolite produced at least double the hydrolase or deaminase activity relative to either activity in ammonium sulfate-grown cells. Overall, the pyrimidine base and ribonucleoside salvage enzymes in P. putida ATCC 17536 biovar B cells were regulated by the carbon or nitrogen source with pyrimidine salvage metabolism differing in biovar A and B strains.</p>\",\"PeriodicalId\":9381,\"journal\":{\"name\":\"Canadian journal of microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/cjm-2025-0161\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2025-0161","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究了恶臭假单胞菌ATCC 17536细胞嘧啶碱和核糖核苷的残留代谢。在ATCC 17536细胞提取物中,嘧啶核糖核苷挽救酶、核苷水解酶和胞嘧啶脱氨酶活性可测,而尿苷磷酸化酶活性不可测。碳源和氮源影响恶臭p.p . putida ATCC 17536的回收途径酶活性水平。与碳源琥珀酸或核糖上生长的细胞相比,ATCC 17536细胞中葡萄糖代谢物对核苷水解酶和胞嘧啶脱氨酶合成的抑制作用被观察到,而氮代谢物似乎控制嘧啶回收酶的合成。当葡萄糖为碳源时,以尿嘧啶或5-甲基胞嘧啶为氮源生长的ATCC 17536细胞的水解酶和脱氨酶合成活性比硫酸铵生长的细胞至少增加了5倍。在琥珀酸培养的ATCC 17536细胞中,胸腺嘧啶或5-甲基胞嘧啶作为氮分解代谢物产生的水解酶或脱氨酶活性至少是硫酸铵培养细胞活性的两倍。总体而言,恶臭p.p . putida ATCC 17536生物多样性B细胞的嘧啶碱和核糖核苷回收酶受到碳源或氮源的调节,并且A和B生物多样性菌株的嘧啶回收代谢不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regulation of Pyrimidine Ribonucleoside Salvage Metabolism in Pseudomonas putida ATCC 17536.

Pyrimidine base and ribonucleoside salvage metabolism was investigated in Pseudomonas putida ATCC 17536 cells. In ATCC 17536 cell extracts, the pyrimidine ribonucleoside salvage enzymes nucleoside hydrolase and cytosine deaminase activities were measurable while uridine phosphorylase activity was not. Carbon and nitrogen sources influenced the levels of the salvage pathway enzyme activities in P. putida ATCC 17536. Catabolite repression by a glucose metabolite of nucleoside hydrolase and cytosine deaminase synthesis in ATCC 17536 cells compared to cells grown on the carbon source succinate or ribose was observed while a nitrogen metabolite appeared to be controlling pyrimidine salvage enzyme synthesis. When glucose was the carbon source, ATCC 17536 cells grown on uracil or 5-methylcytosine as a nitrogen source caused at least a 5-fold increase in hydrolase and deaminase synthesis relative to their activities in ammonium sulfate-grown cells. In succinate-grown ATCC 17536 cells, thymine or 5-methylcytosine as a nitrogen catabolite produced at least double the hydrolase or deaminase activity relative to either activity in ammonium sulfate-grown cells. Overall, the pyrimidine base and ribonucleoside salvage enzymes in P. putida ATCC 17536 biovar B cells were regulated by the carbon or nitrogen source with pyrimidine salvage metabolism differing in biovar A and B strains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
71
审稿时长
2.5 months
期刊介绍: Published since 1954, the Canadian Journal of Microbiology is a monthly journal that contains new research in the field of microbiology, including applied microbiology and biotechnology; microbial structure and function; fungi and other eucaryotic protists; infection and immunity; microbial ecology; physiology, metabolism and enzymology; and virology, genetics, and molecular biology. It also publishes review articles and notes on an occasional basis, contributed by recognized scientists worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信