{"title":"零膨胀微生物组数据聚类的贝叶斯半参数混合模型。","authors":"Suppapat Korsurat, Matthew D Koslovsky","doi":"10.1093/biomtc/ujaf125","DOIUrl":null,"url":null,"abstract":"<p><p>Microbiome research has immense potential for unlocking insights into human health and disease. A common goal in human microbiome research is identifying subgroups of individuals with similar microbial composition that may be linked to specific health states or environmental exposures. However, existing clustering methods are often not equipped to accommodate the complex structure of microbiome data and typically make limiting assumptions regarding the number of clusters in the data which can bias inference. Designed for zero-inflated multivariate compositional count data collected in microbiome research, we propose a novel Bayesian semiparametric mixture modeling framework that simultaneously learns the number of clusters in the data while performing cluster allocation. In simulation, we demonstrate the clustering performance of our method compared to distance- and model-based alternatives and the importance of accommodating zero-inflation when present in the data. We then apply the model to identify clusters in microbiome data collected in a study designed to investigate the relation between gut microbial composition and enteric diarrheal disease.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian semiparametric mixture model for clustering zero-inflated microbiome data.\",\"authors\":\"Suppapat Korsurat, Matthew D Koslovsky\",\"doi\":\"10.1093/biomtc/ujaf125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbiome research has immense potential for unlocking insights into human health and disease. A common goal in human microbiome research is identifying subgroups of individuals with similar microbial composition that may be linked to specific health states or environmental exposures. However, existing clustering methods are often not equipped to accommodate the complex structure of microbiome data and typically make limiting assumptions regarding the number of clusters in the data which can bias inference. Designed for zero-inflated multivariate compositional count data collected in microbiome research, we propose a novel Bayesian semiparametric mixture modeling framework that simultaneously learns the number of clusters in the data while performing cluster allocation. In simulation, we demonstrate the clustering performance of our method compared to distance- and model-based alternatives and the importance of accommodating zero-inflation when present in the data. We then apply the model to identify clusters in microbiome data collected in a study designed to investigate the relation between gut microbial composition and enteric diarrheal disease.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 3\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf125\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf125","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
A Bayesian semiparametric mixture model for clustering zero-inflated microbiome data.
Microbiome research has immense potential for unlocking insights into human health and disease. A common goal in human microbiome research is identifying subgroups of individuals with similar microbial composition that may be linked to specific health states or environmental exposures. However, existing clustering methods are often not equipped to accommodate the complex structure of microbiome data and typically make limiting assumptions regarding the number of clusters in the data which can bias inference. Designed for zero-inflated multivariate compositional count data collected in microbiome research, we propose a novel Bayesian semiparametric mixture modeling framework that simultaneously learns the number of clusters in the data while performing cluster allocation. In simulation, we demonstrate the clustering performance of our method compared to distance- and model-based alternatives and the importance of accommodating zero-inflation when present in the data. We then apply the model to identify clusters in microbiome data collected in a study designed to investigate the relation between gut microbial composition and enteric diarrheal disease.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.