在一个大容量参比实验室中,对快速诊断结核分枝杆菌临床分离株利福平和异烟肼耐药性的BD MAX耐多药结核病检测方法进行标签外评估。

IF 5.4 2区 医学 Q1 MICROBIOLOGY
Angela Pires Brandao, Fabiane Maria de Almeida Ferreira, Fernanda Cristina Dos Santos Simeao, Lucilaine Ferrazoli, Erica Chimara, Rosângela Siqueira de Oliveira, Juliana Maira Watanabe Pinhata
{"title":"在一个大容量参比实验室中,对快速诊断结核分枝杆菌临床分离株利福平和异烟肼耐药性的BD MAX耐多药结核病检测方法进行标签外评估。","authors":"Angela Pires Brandao, Fabiane Maria de Almeida Ferreira, Fernanda Cristina Dos Santos Simeao, Lucilaine Ferrazoli, Erica Chimara, Rosângela Siqueira de Oliveira, Juliana Maira Watanabe Pinhata","doi":"10.1128/jcm.00912-25","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-resistant tuberculosis (TB) remains a primary global health concern. Multidrug-resistant TB is defined by resistance to at least rifampicin (RIF) and isoniazid (INH), the two key drugs used in TB treatment. The BD MAX Multi-Drug Resistant Tuberculosis (BD MAX) assay is a fully automated real-time PCR platform recommended by the World Health Organization for the initial diagnosis of TB and RIF and INH resistance (RIF-R and INH-R) directly from pulmonary clinical samples. This study aimed to assess the off-label performance of BD MAX in clinical <i>M. tuberculosis</i> complex (MTBC) isolates under routine laboratory conditions. The assay was first validated using non-tuberculous mycobacteria (NTM) and MTBC isolates with known mutations. For real-world validation, it was compared to the GenoType MTBDR<i>plus</i> by testing 1,440 clinical isolates prospectively. The BD MAX assay correctly excluded MTBC from all NTM cultures. Among MTBC isolates with known mutations, it identified 19 of 20 RIF-R isolates and 14 of 15 INH-R isolates. In prospective testing, BD MAX achieved 99.6% sensitivity (1,403/1,409), 96.8% specificity (30/31), and 99.5% overall accuracy (1,433/1,440) for MTBC detection. For drug resistance detection, it showed 95.2% (40/42) concordance for RIF, 96.8% (30/31) for INH, and 81.3% (13/16) for MDR when compared to MTBDR<i>plus</i>. Discrepancies between MTBDR<i>plus</i> and BD MAX included heteroresistant cases and unreportable resistance results by BD MAX due to infrequent mutations or low bacterial load. Overall, this study confirms BD MAX as an accurate and reliable tool for MTBC detection and drug resistance profiling in clinical isolates in high-volume TB laboratories.IMPORTANCEThis study highlights the importance of the BD MAX Multi-Drug Resistant Tuberculosis assay (BD MAX) applied in clinical isolates for the detection of multidrug-resistant tuberculosis (MDR-TB), i.e., <i>Mycobacterium tuberculosis</i> resistance to rifampicin and isoniazid. TB is a global health issue, and drug-resistant TB makes treatment more difficult, favoring transmission and disease amplification. The BD MAX platform offers a faster and more automated way to detect TB and drug resistance. The study showed that BD MAX, applied off-label in clinical isolates, accurately identified TB and resistance to rifampicin and isoniazid, with results comparable to those of the widely used line probe assay. This is significant in a high-volume laboratory because it is more straightforward and more rapid than the line probe assay. BD MAX showed some limitations, especially in detecting rare mutations and in cases of low bacterial levels. Overall, this tool could improve TB care, especially in high-volume laboratories.</p>","PeriodicalId":15511,"journal":{"name":"Journal of Clinical Microbiology","volume":" ","pages":"e0091225"},"PeriodicalIF":5.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Off-label evaluation of the BD MAX MDR-TB assay for rapid diagnosis of rifampicin and isoniazid resistance of <i>Mycobacterium tuberculosis</i> clinical isolates in a high-volume reference laboratory.\",\"authors\":\"Angela Pires Brandao, Fabiane Maria de Almeida Ferreira, Fernanda Cristina Dos Santos Simeao, Lucilaine Ferrazoli, Erica Chimara, Rosângela Siqueira de Oliveira, Juliana Maira Watanabe Pinhata\",\"doi\":\"10.1128/jcm.00912-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug-resistant tuberculosis (TB) remains a primary global health concern. Multidrug-resistant TB is defined by resistance to at least rifampicin (RIF) and isoniazid (INH), the two key drugs used in TB treatment. The BD MAX Multi-Drug Resistant Tuberculosis (BD MAX) assay is a fully automated real-time PCR platform recommended by the World Health Organization for the initial diagnosis of TB and RIF and INH resistance (RIF-R and INH-R) directly from pulmonary clinical samples. This study aimed to assess the off-label performance of BD MAX in clinical <i>M. tuberculosis</i> complex (MTBC) isolates under routine laboratory conditions. The assay was first validated using non-tuberculous mycobacteria (NTM) and MTBC isolates with known mutations. For real-world validation, it was compared to the GenoType MTBDR<i>plus</i> by testing 1,440 clinical isolates prospectively. The BD MAX assay correctly excluded MTBC from all NTM cultures. Among MTBC isolates with known mutations, it identified 19 of 20 RIF-R isolates and 14 of 15 INH-R isolates. In prospective testing, BD MAX achieved 99.6% sensitivity (1,403/1,409), 96.8% specificity (30/31), and 99.5% overall accuracy (1,433/1,440) for MTBC detection. For drug resistance detection, it showed 95.2% (40/42) concordance for RIF, 96.8% (30/31) for INH, and 81.3% (13/16) for MDR when compared to MTBDR<i>plus</i>. Discrepancies between MTBDR<i>plus</i> and BD MAX included heteroresistant cases and unreportable resistance results by BD MAX due to infrequent mutations or low bacterial load. Overall, this study confirms BD MAX as an accurate and reliable tool for MTBC detection and drug resistance profiling in clinical isolates in high-volume TB laboratories.IMPORTANCEThis study highlights the importance of the BD MAX Multi-Drug Resistant Tuberculosis assay (BD MAX) applied in clinical isolates for the detection of multidrug-resistant tuberculosis (MDR-TB), i.e., <i>Mycobacterium tuberculosis</i> resistance to rifampicin and isoniazid. TB is a global health issue, and drug-resistant TB makes treatment more difficult, favoring transmission and disease amplification. The BD MAX platform offers a faster and more automated way to detect TB and drug resistance. The study showed that BD MAX, applied off-label in clinical isolates, accurately identified TB and resistance to rifampicin and isoniazid, with results comparable to those of the widely used line probe assay. This is significant in a high-volume laboratory because it is more straightforward and more rapid than the line probe assay. BD MAX showed some limitations, especially in detecting rare mutations and in cases of low bacterial levels. Overall, this tool could improve TB care, especially in high-volume laboratories.</p>\",\"PeriodicalId\":15511,\"journal\":{\"name\":\"Journal of Clinical Microbiology\",\"volume\":\" \",\"pages\":\"e0091225\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/jcm.00912-25\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jcm.00912-25","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

耐药结核病(TB)仍然是一个主要的全球卫生问题。耐多药结核病的定义是至少对利福平(RIF)和异烟肼(INH)有耐药性,这是结核病治疗中使用的两种关键药物。BD MAX多重耐药结核病(BD MAX)检测是世界卫生组织推荐的一种全自动实时PCR平台,用于直接从肺部临床样本中初步诊断结核病和RIF和INH耐药性(RIF- r和INH- r)。本研究旨在评估bdmax在常规实验室条件下对临床结核分枝杆菌复合体(MTBC)分离株的超说明书性能。该检测首先使用已知突变的非结核分枝杆菌(NTM)和MTBC分离株进行验证。为了进行实际验证,通过对1440个临床分离株进行前瞻性检测,将其与基因型MTBDRplus进行了比较。bdmax试验正确地从所有NTM培养物中排除了MTBC。在已知突变的MTBC分离株中,鉴定出20株RIF-R分离株中的19株和15株INH-R分离株中的14株。在前瞻性测试中,BD MAX检测MTBC的灵敏度为99.6%(1,403/1,409),特异性为96.8%(30/31),总体准确性为99.5%(1,433/1,440)。在耐药检测方面,与MTBDRplus相比,RIF的一致性为95.2% (40/42),INH的一致性为96.8% (30/31),MDR的一致性为81.3%(13/16)。MTBDRplus和BD MAX之间的差异包括异耐药病例和由于突变不频繁或细菌负荷低而未报告的BD MAX耐药结果。总的来说,这项研究证实了BD MAX是一种准确可靠的工具,可用于大容量结核病实验室中临床分离株的MTBC检测和耐药性分析。本研究强调了BD MAX多重耐药结核试验(BD MAX)在临床分离物中用于检测多重耐药结核(MDR-TB)的重要性,即结核分枝杆菌对利福平和异烟肼的耐药性。结核病是一个全球性的卫生问题,耐药结核病使治疗更加困难,有利于传播和疾病扩大。BD MAX平台提供了一种更快、更自动化的方法来检测结核病和耐药性。该研究表明,应用于临床分离株的bdmax能够准确地鉴定出结核病以及对利福平和异烟肼的耐药性,其结果与广泛使用的线探针法相当。这在大容量实验室中很重要,因为它比线探针测定更直接、更快速。bdmax有一定的局限性,特别是在检测罕见突变和低细菌水平的情况下。总的来说,这个工具可以改善结核病治疗,特别是在大容量实验室。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Off-label evaluation of the BD MAX MDR-TB assay for rapid diagnosis of rifampicin and isoniazid resistance of Mycobacterium tuberculosis clinical isolates in a high-volume reference laboratory.

Drug-resistant tuberculosis (TB) remains a primary global health concern. Multidrug-resistant TB is defined by resistance to at least rifampicin (RIF) and isoniazid (INH), the two key drugs used in TB treatment. The BD MAX Multi-Drug Resistant Tuberculosis (BD MAX) assay is a fully automated real-time PCR platform recommended by the World Health Organization for the initial diagnosis of TB and RIF and INH resistance (RIF-R and INH-R) directly from pulmonary clinical samples. This study aimed to assess the off-label performance of BD MAX in clinical M. tuberculosis complex (MTBC) isolates under routine laboratory conditions. The assay was first validated using non-tuberculous mycobacteria (NTM) and MTBC isolates with known mutations. For real-world validation, it was compared to the GenoType MTBDRplus by testing 1,440 clinical isolates prospectively. The BD MAX assay correctly excluded MTBC from all NTM cultures. Among MTBC isolates with known mutations, it identified 19 of 20 RIF-R isolates and 14 of 15 INH-R isolates. In prospective testing, BD MAX achieved 99.6% sensitivity (1,403/1,409), 96.8% specificity (30/31), and 99.5% overall accuracy (1,433/1,440) for MTBC detection. For drug resistance detection, it showed 95.2% (40/42) concordance for RIF, 96.8% (30/31) for INH, and 81.3% (13/16) for MDR when compared to MTBDRplus. Discrepancies between MTBDRplus and BD MAX included heteroresistant cases and unreportable resistance results by BD MAX due to infrequent mutations or low bacterial load. Overall, this study confirms BD MAX as an accurate and reliable tool for MTBC detection and drug resistance profiling in clinical isolates in high-volume TB laboratories.IMPORTANCEThis study highlights the importance of the BD MAX Multi-Drug Resistant Tuberculosis assay (BD MAX) applied in clinical isolates for the detection of multidrug-resistant tuberculosis (MDR-TB), i.e., Mycobacterium tuberculosis resistance to rifampicin and isoniazid. TB is a global health issue, and drug-resistant TB makes treatment more difficult, favoring transmission and disease amplification. The BD MAX platform offers a faster and more automated way to detect TB and drug resistance. The study showed that BD MAX, applied off-label in clinical isolates, accurately identified TB and resistance to rifampicin and isoniazid, with results comparable to those of the widely used line probe assay. This is significant in a high-volume laboratory because it is more straightforward and more rapid than the line probe assay. BD MAX showed some limitations, especially in detecting rare mutations and in cases of low bacterial levels. Overall, this tool could improve TB care, especially in high-volume laboratories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Clinical Microbiology
Journal of Clinical Microbiology 医学-微生物学
CiteScore
17.10
自引率
4.30%
发文量
347
审稿时长
3 months
期刊介绍: The Journal of Clinical Microbiology® disseminates the latest research concerning the laboratory diagnosis of human and animal infections, along with the laboratory's role in epidemiology and the management of infectious diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信