超级电容CO2捕获通过可扩展,水性,中性聚合物基电解质。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-22 DOI:10.1002/cssc.202501259
Daniel García-Giménez, Marta Santos-Rodríguez, Antoniou Maria-Anna, Mohammad Sanan-Ali, Miguel A López-Manchado, Javier Carretero-González
{"title":"超级电容CO2捕获通过可扩展,水性,中性聚合物基电解质。","authors":"Daniel García-Giménez, Marta Santos-Rodríguez, Antoniou Maria-Anna, Mohammad Sanan-Ali, Miguel A López-Manchado, Javier Carretero-González","doi":"10.1002/cssc.202501259","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous electrolytes offer a safer, more cost-effective, and scalable solution for electrochemical CO<sub>2</sub> capture. Herein, electrolytes that combine harmless polyethylene glycol with slightly salty water are developed, which enables the capture of CO<sub>2</sub> in a supercapacitor cell of up to 79 mmol of CO<sub>2</sub> per kilogram of electrode material while operating at a current density of 30 mA g<sup>-1</sup>, a voltage of 2.5 V, at 40 °C, and under neutral pH conditions. Interestingly, applying negative charge protocols up to -2.5 V increases the amount of CO<sub>2</sub> adsorbed per kilogram of electrode to 356 mmol. This is attributed to both the ejection of preadsorbed bicarbonate species from the pores and their slow migration kinetics near the electrode exposed to CO<sub>2</sub> gas toward the positively charged counter electrode. This finding indicates that the CO<sub>2</sub> capture and release mechanism exhibits no dependence on the direction of the charge. These polymer electrolytes lead to a threefold increase in the gravimetric energy stored compared to similar devices operating at ≈1 V that utilize microporous carbon electrode materials. The system also reveals excellent stability and corrosion resistance under long-term cycling at high voltages. This advanced technology marks a major advancement in sustainable carbon capture solutions.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501259"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supercapacitive CO<sub>2</sub> Capture through a Scalable, Aqueous, Neutral Polymer-Based Electrolyte.\",\"authors\":\"Daniel García-Giménez, Marta Santos-Rodríguez, Antoniou Maria-Anna, Mohammad Sanan-Ali, Miguel A López-Manchado, Javier Carretero-González\",\"doi\":\"10.1002/cssc.202501259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aqueous electrolytes offer a safer, more cost-effective, and scalable solution for electrochemical CO<sub>2</sub> capture. Herein, electrolytes that combine harmless polyethylene glycol with slightly salty water are developed, which enables the capture of CO<sub>2</sub> in a supercapacitor cell of up to 79 mmol of CO<sub>2</sub> per kilogram of electrode material while operating at a current density of 30 mA g<sup>-1</sup>, a voltage of 2.5 V, at 40 °C, and under neutral pH conditions. Interestingly, applying negative charge protocols up to -2.5 V increases the amount of CO<sub>2</sub> adsorbed per kilogram of electrode to 356 mmol. This is attributed to both the ejection of preadsorbed bicarbonate species from the pores and their slow migration kinetics near the electrode exposed to CO<sub>2</sub> gas toward the positively charged counter electrode. This finding indicates that the CO<sub>2</sub> capture and release mechanism exhibits no dependence on the direction of the charge. These polymer electrolytes lead to a threefold increase in the gravimetric energy stored compared to similar devices operating at ≈1 V that utilize microporous carbon electrode materials. The system also reveals excellent stability and corrosion resistance under long-term cycling at high voltages. This advanced technology marks a major advancement in sustainable carbon capture solutions.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202501259\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501259\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501259","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水溶液电解质为电化学CO2捕获提供了更安全、更具成本效益和可扩展的解决方案。在这里,将无害的聚乙二醇与微盐水结合在一起的电解质被开发出来,这使得在每千克电极材料中高达79 mmol CO2的超级电容器电池中捕获CO2,同时在30 mA g-1的电流密度下工作,电压为2.5 V,在40°C和中性pH条件下工作。有趣的是,使用负电荷协议高达-2.5 V,每千克电极吸附的二氧化碳量增加到356 mmol。这是由于预吸附的碳酸氢盐从孔隙中喷射出来,以及它们在暴露于CO2气体的电极附近向带正电的反电极缓慢迁移的动力学。这一发现表明CO2的捕获和释放机制不依赖于电荷的方向。与使用微孔碳电极材料工作在≈1 V的类似设备相比,这些聚合物电解质导致存储的重量能量增加了三倍。该系统在高压下长期循环也显示出优异的稳定性和耐腐蚀性。这项先进的技术标志着可持续碳捕获解决方案的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supercapacitive CO2 Capture through a Scalable, Aqueous, Neutral Polymer-Based Electrolyte.

Aqueous electrolytes offer a safer, more cost-effective, and scalable solution for electrochemical CO2 capture. Herein, electrolytes that combine harmless polyethylene glycol with slightly salty water are developed, which enables the capture of CO2 in a supercapacitor cell of up to 79 mmol of CO2 per kilogram of electrode material while operating at a current density of 30 mA g-1, a voltage of 2.5 V, at 40 °C, and under neutral pH conditions. Interestingly, applying negative charge protocols up to -2.5 V increases the amount of CO2 adsorbed per kilogram of electrode to 356 mmol. This is attributed to both the ejection of preadsorbed bicarbonate species from the pores and their slow migration kinetics near the electrode exposed to CO2 gas toward the positively charged counter electrode. This finding indicates that the CO2 capture and release mechanism exhibits no dependence on the direction of the charge. These polymer electrolytes lead to a threefold increase in the gravimetric energy stored compared to similar devices operating at ≈1 V that utilize microporous carbon electrode materials. The system also reveals excellent stability and corrosion resistance under long-term cycling at high voltages. This advanced technology marks a major advancement in sustainable carbon capture solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信